Перевод: со всех языков на все языки

со всех языков на все языки

без тенденции

  • 1 рынок без выявившейся тенденции

    Banking: uneven market

    Универсальный русско-английский словарь > рынок без выявившейся тенденции

  • 2 trendless

    Динамика без какого-либо определенного направления в сторону повышения или понижения курса ценной бумаги или на рынке акций.

    Англо-русский словарь по инвестициям > trendless

  • 3 неустойчивый рынок

    Универсальный русско-английский словарь > неустойчивый рынок

  • 4 visible

    ˈvɪzəbl прил.
    1) видимый, видный clearly visible, plainly visible ≈ хорошо просматривающийся
    2) очевидный, явный Syn: evident, obvious ∙ visible to the naked eye ≈ видный невооруженным глазом обыкн. pl видимый предмет (the *) все видимое, видимый мир видимый, зримый - * at 100 feet видимый на расстоянии ста футов - * to the naked eye видимый невооруженным глазом - the house was * in the distance дом виднелся вдали - the lights are no longer * огней уже не видно( специальное) визуальный, видимый - the * horizon видимый горизонт явный, очевидный - he spoke with * impatience он говорил с явным нетерпением - without any * cause без всякой видимой причины - it serves no * purpose это не служит никакой определенной цели принимающий посетителей - is the manager *? директор может принять меня? (коммерческое) имеющийся в наличности, реальный (экономика) видимый - * items видимые статьи( платежного баланса) ;
    экспорт и импорт товаров - * trade видимая торговля( экспорт и импорт товаров) ~ явный, очевидный;
    the trends became visible выявились (скрытые) тенденции;
    without any visible cause без всякой видимой причины visible видимый, очевидный, явный ~ видимый;
    visible image видимое изображение ~ видимый ~ вчт. видимый ~ имеющийся в наличности ~ реальный ~ явный, очевидный;
    the trends became visible выявились (скрытые) тенденции;
    without any visible cause без всякой видимой причины ~ явный, очевидный;
    the trends became visible выявились (скрытые) тенденции;
    without any visible cause без всякой видимой причины

    Большой англо-русский и русско-английский словарь > visible

  • 5 visible

    [ˈvɪzəbl]
    visible явный, очевидный; the trends became visible выявились (скрытые) тенденции; without any visible cause без всякой видимой причины visible видимый, очевидный, явный visible видимый; visible image видимое изображение visible видимый visible вчт. видимый visible имеющийся в наличности visible реальный visible явный, очевидный; the trends became visible выявились (скрытые) тенденции; without any visible cause без всякой видимой причины visible явный, очевидный; the trends became visible выявились (скрытые) тенденции; without any visible cause без всякой видимой причины

    English-Russian short dictionary > visible

  • 6 uneven market

    Универсальный англо-русский словарь > uneven market

  • 7 доступность анализу

    Понятие, относящееся к комплексу суждений о готовности и пригодности пациента к психоаналитическому способу терапии. Критерии доступности анализу, основанные на развивающихся представлениях теоретического и технического плана, со временем претерпели изменения и у разных аналитиков различаются. Изначально определение доступности анализу основывалось на диагностических критериях: пригодными для проведения анализа признавались лица в возрасте до пятидесяти лет, страдающие неврозами переноса (истерия, фобии и обсессивно-компульсивные расстройства). В дальнейшем, с развитием психологии Я и особенно представлений о различных механизмах защиты, границы анализа стали расширяться вплоть до того, что отдельные аналитики сочли, что не существует никаких препятствий для применения психоанализа к пациентам с выраженными расстройствами характера, наркотическими зависимостями, перверсиями, нарциссическими нарушениями, пограничными состояниями и даже психозами. Однако в случае особенно острых расстройств необходимы изменения в классической аналитической технике.
    В настоящее время большинство аналитиков судят о доступности анализу пациента на основе оценок всей его личностной организации и жизненной ситуации. Сюда относятся, помимо прочего, целостность и зрелость психического аппарата (Оно, Я, Сверх-Я) и различных его функций, а также мотивация анализируемого в отношении терапии. При этом важно, чтобы тяжесть страдания пациента оправдывала серьезность подобного вмешательства, а желание пациента лечиться не являлось результатом давления со стороны официальных органов или чрезмерного влияния со стороны членов семьи.
    Требования, предъявляемые психоаналитическим процессом к пациенту, включают способность к свободному ассоциированию, готовность жертвовать необходимым временем и деньгами, толерантность к фрустрации, способность к созданию терапевтического альянса (помогающего преодолевать регрессивные переживания, связанные с переносом), толерантность к тревоге и другим сильным аффектам без последующего ухода или отыгрывания. Не меньшее значение имеет опыт аналитика, его способность к эмпатии, способность выдерживать без реактивного контрпереноса интенсивные аффективные интерперсональные переживания, участником которых он является. Это правило тем более принципиально и важно, чем глубже проблемы пациента, подвергающегося анализу.
    У некоторых пациентов проявления клинической картины, личностные особенности, характер жизненной ситуации свидетельствуют о том, что в настоящее время проведение анализа будет безуспешным. Для достижения стабильного, доступного работе переноса необходима достаточная дифференциация себя и объектов. Поэтому противопоказаниями для анализа являются неадекватная оценка реальности как следствие магического мышления либо использования таких примитивных механизмов защиты, как проекция, отказ, сверхидеализация или обесценивание; выраженные саморазрушительные или деструктивные тенденции, садистское или криминальное поведение. Не оставляют возможности для анализа или серьезно ему препятствуют недостаточные физические кондиции пациента, например физическая неспособность посещать сеансы или требующие неотложного вмешательства медицинские проблемы, в частности хирургические. Кроме того, определенные прогнозируемые особенности невроза или характера пациента (например, выраженные пунитивные тенденции, неконтролируемая импульсивность, патологическая лживость, крайняя тревожность, неослабевающее сопротивление лечению) могут при соответствующей интенсивности блокировать или даже прервать анализ.
    Множество факторов, которые необходимо учитывать, стали причиной разногласий среди аналитиков относительно того, какой способ оценки доступности анализу оптимален. На практике используются различные методы: один-два неструктурированных сеанса, многократные сеансы, вопросы, нацеленные на выявление определенной информации анамнестического характера, период пробного анализа или даже период подготовительной психотерапии (особенно для пациентов с серьезными проблемами).
    Доступность анализу может быть верифицирована лишь на основе лечения, достаточно длительного для того, чтобы предоставить пациенту возможности для последующих изменений: он должен реагировать на раскрытие и интерпретации аналитиком признаков сопротивления, у него должен возникнуть перенос и, как правило, явно выраженный невроз переноса, он должен достигать более удовлетворительного разрешения бессознательного конфликта, модифицировать перенос таким образом, чтобы он не смешивался с реальностью и требованиями жизни, и у него должен установиться постоянно развивающийся самоаналитический процесс.
    \
    Лит.: [51, 492, 825, 847, 857]

    Словарь психоаналитических терминов и понятий > доступность анализу

  • 8 I Want то Live!

     Я хочу жить!
       1958 - США (120 мин)
         Произв. UA (Уолтер Уэйнджер)
         Реж. РОБЕРТ УАЙЗ
         Сцен. Нелсон Гиддинг и Дон Манкивиц по мотивам статей Эда Монтгомери и писем Барбары Грэм
         Опер. Лайонел Линдон
         Муз. Джон Мэндел
         В ролях Сьюзен Хейуорд (Барбара Грэм), Саймон Окленд (Эд Монтгомери), Вирджиния Винсент (Пег), Теодор Бикель (Карл Палмбёрг), Уэсли Лау (Генри Грэм), Филип Кулидж (Эмметт Пёркинз), Лу Кругмен (Джек Санто), Джеймс Филбрук (Брюс Кинг), Бартлетт Робинсон (окружной прокурор), Гэйдж Кларк (Ричард Трибоу),
       Барбара Грэм, танцовщица и проститутка, впервые попадает в тюрьму за дачу ложных показаний. Она хотела помочь друзьям. Выйдя на свободу под честное слово, она связывается с 2 мошенниками и помогает им в разных затеях (игра краплеными картами, кражи со взломом и пр.). Она выходит замуж за бармена и рожает ребенка. Но ее муж - наркоман, и она с ним расстается. Оставшись совсем без денег, она находит бывших сообщников и попадает вместе с ними под арест за соучастие в убийстве. Она не может доказать, что в вечер убийства была с мужем и ребенком. В отчаянии она соглашается на предложение соседки по камере, чей знакомый может предоставить ей фальшивое алиби. Тот вынуждает ее признаться, что в роковой вечер она была на месте преступления. На процессе она узнает, что человек, обеспечивающий ей «алиби», - полицейский, которому было поручено вытянуть из нее признание. Ее прошлое, судимость за дачу ложных показаний, всплывшая история с поддельным алиби настраивают присяжных на суровый лад. Вдобавок бывшие сообщники, надеясь на досрочное освобождение, винят Барбару во всех смертных грехах. Барбару приговаривают к смертной казни в газовой камере тюрьмы Сан-Квентин в Калифорнии. Психиатр заявляет, что, по его мнению, она невиновна в убийстве, и журналист Эд Монтгомери, во время суда возглавивший в прессе кампанию против нее, теперь встает на ее защиту. Ее переводят в камеру смертников, и она проводит последние дни по соседству с газовой камерой. Адвокат и Монтгомери пытаются ее спасти, но лишь оттягивают исполнение приговора. Наконец, Барбара входит в газовую камеру с повязкой на глазах, как она просила сама, чтобы избежать взглядов свидетелей, следящих за ее агонией из-за перил.
        Этот спорный и неровный, но захватывающий 27-й фильм Роберта Уайза, наряду с Босоногой графиней, The Barefoot Contessa и Тихим американцем, The Quiet American, была выпущена фирмой Джозефа Манкивица «Figaro Inc.». Из этих 3 картин только Я хочу жить! окупилась в прокате. Уолтер Уэйнджер предложил 1-ю версию сценария (написанную Доном Манкивицем, племянником Джозефа) Уайзу, и тот согласился заняться фильмом, но потребовал, чтобы сценарий полностью переписал Нелсон Гиддинг (работавший с Уайзом на 5 картинах). Есть основания полагать, что переработку нужно было завести еще дальше. Осуждать институт смертной казни на примере судебной ошибки (причем спорной) означает подкреплять тезис допущением, которое может ему повредить и даже полностью его дискредитировать. В данном случае речь идет не столько о самой природе меры пресечения, сколько о ее уместности. Реальная виновность приговоренного дает противникам смертной казни куда более весомые аргументы, а спорам вокруг нее - более честную и определенную почву. И, напротив, полная невиновность осужденного имеет все шансы оттеснить дебаты в наезженную колею мелодрамы, где ужас перед судебной ошибкой затмит собой ужас перед «высшей мерой наказания». Но Уайзу в своей режиссуре удалось в какой-то мере исправить этот недостаток. Фильм захватывает тем, что режиссура эта беспрестанно сталкивает между собой (вместо того, чтобы гармонично соединять, как во многих других фильмах Уайза) 2 основные тенденции в стиле режиссера: стремление к документалистике и поиски зрелищного и сенсационного материала. Довольно умелый сценарий, состоящий из 3 частей (биография Барбары; пребывание в тюрьме и процесс; ожидание казни и сама казнь), позволяет пронаблюдать за тем, как режиссура Уайза постепенно уравновесит 2 эти тенденции.
       В биографической части (увы, слишком поверхностно и неопределенно говорящей о происхождения и юности героини) Уайз мастерски использует освещение и короткий монтаж, чтобы подчеркнуть жизненные силы, бурную энергию главной героини, а также ее беспечность и неосторожность. Эта энергия растрачивается впустую в ночном, влажном и мерцающем мире, где Барбара напрасно считает себя королевой. 2-я часть выводит вперед растерянность героини, по наивности ставшей жертвой ловушек, сомнительными методами расставленных сообщниками, полицией и правосудием. Это самая нейтральная и самая неудачная часть, в которой Уайз умело - но без разъедающей силы, которой требовала тема, - смешивает драматургическое напряжение, психологическое описание и строгое изложение фактов и событий в юридическом ключе. Только 3-я часть пробуждает его талант. Его режиссерский стиль, где теперь превосходно уживаются строгость, зрелищность и сдержанность, стремится выразить простое течение времени, когда оно, нагруженное трагедией, несет главному герою лишь неотвратимое поражение и страдания. Уайз тщательно и с путающей медлительностью описывает мучения, пережитые героиней перед тем, как ее запирают в камере пыток, достойной позднего средневековья. Здесь речь идет уже не о вине или невиновности, а всего лишь о женщине, которой предстоит умереть, причем в таких условиях, что доброжелательность тюремщиков, последние старания защитников и все прочие знаки симпатии лишь усиливают чудовищную жестокость картины. Тезису больше не нужны аргументы, и он уступает место простому, по-иному убедительному созерцанию ужаса. К тяжелой теме - последняя ночь приговоренной к смертной казни - Уайз применяет технику рассказа в реальном времени, над которой он экспериментировал в Подставе, The Set-Up.
       Великолепная и щедрая актерская работа Сьюзен Хейуорд (которая, напомним, работала со Стюартом Хайслером, Де Миллем, Жаком Турнёром, Манкивицем, Генри Кингом, Николасом Реем, Делмером Дэйвзом и т. д.; один из самых красивых послужных списков среди голливудских актрис) помогает режиссеру четко обозначить намерения. Джазовая партитура, в свое время привлекшая к себе очень большое внимание (идея Джозефа Манкивица) - одновременно и худшая, и лучшая находка фильма. Она придает начальным сценам удивительный ритм и атмосферу, однако ужасно «старит» фильм в целом, и нам часто думалось, что в звуковом сопровождении подобного сюжета музыка не должна быть настолько явной, либо же ее не должно быть вовсе.

    Авторская энциклопедия фильмов Жака Лурселля > I Want то Live!

  • 9 Dow Jones Industrial Average

    Индекс, калькулируемый по ценным бумагам 30 ведущих "голубых фишек", который представляет собой среднее арифметическое без учета весов и публикуется в виде пунктов, а не в долларовом выражении. Промышленный индекс Доу Джонс является представительным индикатором общей тенденции на рынках, но особенно - тенденции на Нью-Йоркской фондовой бирже.

    Англо-русский словарь по инвестициям > Dow Jones Industrial Average

  • 10 support

    səˈpɔ:t
    1. сущ.
    1) поддержка;
    помощь( for;
    in) price supports амер. ≈ субсидии, даваемые правительством фермерам to derive, draw, get, receive support from ≈ получить поддержку с чьей-л. стороны to enlist, line up, mobilize, round up support for ≈ заручиться поддержкой для чего-л. to gain, get, win support for ≈ завоевать чью-л. поддержку, чье-л. одобрение to give lukewarm support to a candidateвяло, слабо поддерживать кандидата to have the support of ≈ иметь чью-л. поддержку to lend, give, offer, provide support (to) ≈ оказывать поддержку ardent support complete support firm support solid support unstinting support unwavering support wholehearted support active support loyal support government support state support popular support public support Syn: help
    2) а) оплот, опора б) перен. кормилец
    3) а) средства к существованию б) финансовое обеспечение, содержание
    4) тех. опорная стойка;
    кронштейн;
    штатив
    5) воен. прикрытие артиллерии
    2. гл.
    1) поддерживать, подпирать;
    нести нагрузку
    2) поддерживать;
    содержать (материально)
    3) поддерживать (морально) ;
    помогать, содействовать, способствовать to support completely, strongly, wholeheartedlyгорячо поддерживать We supported their seeking office. ≈ Мы помогли им найти офис. Syn: encourage
    4) подтверждать, служить доказательством
    5) выносить, выдерживать;
    сносить поддержка, помощь - unanimous * единодушная поддержка - to give /to lend/ * to smb., smth. оказывать поддержку кому-л., чему-л. - to get no * не получить поддержки - I shall want all the * I can get мне понадобится любая помощь - I hope to have your * я надеюсь, что вы меня поддержите /мне поможете/ - to speak in * of smth. поддерживать что-л., выступать с поддержкой /в защиту/ чего-л. - to pledge one's * to... взять на себя( официальное) обязательство поддержать( такую-то кандидатуру) - to add * to the rumour that... подтвердить слух о том, что...;
    сделать еще более вероятным слух о том, что... - to lack popular * не пользоваться поддержкой населения, быть непопулярным опора, оплот - the elder son is the * of the family старший сын - опора семьи - to be smb.'s * in old age быть чьей-л. опорой в старости кормилец - he was the * of the family он был кормильцем семьи средства к существованию - without means of * без средств к существованию - it is insufficient for the * of life это меньше прожиточного минимума финансовое обеспечение, содержание - the school draws its * from public subscriptions школа существует на средства, собранные общественностью - state * of education расходы государства на (народное) образование - his wife sued for * его жена подала в суд на алименты - the divorced wife claimed * for her children from her husband разведенная жена потребовала от своего бывшего мужа алименты на содержание детей обеспечение (какой-л. деятельности) (военное) материально-техническое (и медицинское) обеспечение (тж. logistical *) - critical * особо необходимые виды материальных средств и обслуживания - medical * медицинское обеспечение - ordnance * обеспечение, осуществляемое артиллерийско-технической службой - to furnish * to troops обеспечивать войска (театроведение) актер или актриса на вторых или выходных ролях - the rest of the cast provided strong * остальные актеры обеспечили крепкий ансамбль основа, основание( материал, на который наносится картина;
    полотно, дерево и т. п.) (военное) поддержка - * aviation авиация поддержки - * echelon группа /эшелон/ поддержки;
    группа прикрытия;
    второй эшелон - * line линия поддержки;
    вторая линия траншей - in * поддерживающий;
    в резерве - troops in * войска в резерве - to place in * выделять для поддержки - to cut off from * отрезать от тыла (техническое) опора - the *(s) of a bridge опоры моста (техническое) кронштейн (техническое) штатив (техническое) (горное) стойка( техническое) суппорт, держатель (американизм) (военное) сторожевая застава( спортивное) упор (гимнастика) - back * упор лежа сзади( спортивное) наплыв (фаза опоры в плавании) (экономика) закупка для поддержания цен( на сельскохозяйственные продукты и т. п.) ;
    интервенционная скупка (тж. price *s) поддерживать, подпирать - to * an arch поддерживать арку - the lifebelt *ed him on the surface спасательный пояс удерживал его на поверхности - is this bridge strong enough to * heavy lorries? хватит ли у этого моста прочности для проезда тяжелых грузовиков?;
    выдержит ли мост тяжелые грузовики? помогать, поддерживать (материально) ;
    содержать (семью и т. п.) - to * a family содержать семью - to * an institution жертвовать на учреждение - to * life обеспечить средства к существованию - she decided to * herself она решила сама зарабатывать на жизнь - he is *ed by parents он живет на средства /на иждивении/ родителей (военное) обеспечивать;
    обслуживать - to * logistically обеспечивать в материально-техническом отношении оказывать (моральную) поддержку;
    придавать силы - to * the spirits поддерживать дух - your approval *ed him ваше одобрение поддержало его /придало ему силы/ - a glass of wine *ed his strength рюмка вина подкрепила его /поддержала его силы/ (спортивное) быть поклонником - to * a team болеть за какую-л. команду защищать;
    помогать, содействовать - to * the peace policy поддерживать мирную политику, выступать в защиту политики мира - to * the motion поддержать предложение - nobody *ed him никто не поддержал его подтверждать, служить доказательством - these facts * my theory эти факты подтверждают мою теорию - accusation not *ed by proof бездоказательное обвинение - to * an alibi подтвердить чье-л. алиби - the usage is not *ed by good authority авторитетные источники не подтверждают такое словоупотребление выдерживать, выносить, сносить - he *s fatigue well он хорошо переносит усталость - he couldn't * insolence он не мог снести /вынести/ дерзости выдерживать (роль, характер) - it did not seem funny to them but they laughed to * the role им это не показалось смешным, но они засмеялись, чтобы не выйти из роли (театроведение) играть вторые роли, участвовать в эпизодах (экономика) поддерживать на определенном уровне (курсы, цены;
    путем скупки акций и т. п.) agricultural ~ scheme программа финансирования сельского хозяйства basic ~ основная поддержка (в т. ч. денежная) business ~ поддержка предприятия child ~ сем. право пособие на ребенка customer ~ обслуживание клиента export credit ~ обеспечение экспортного кредита financial ~ финансовая поддержка financial ~ финансовая подержка financial ~ финансовая помощь give ~ оказывать поддержку hardware ~ вчт. аппаратная поддержка ~ поддержка;
    in support of в подтверждение;
    to speak in support of... поддерживать, защищать... income ~ обеспечение дохода income ~ поддержание дохода (на определенном уровне) invalidity ~ поддержка (в т.ч. финансовая) инвалида language ~ вчт. языковая подержка to lend (или to give) ~ (to) оказывать поддержку;
    price supports амер. субсидии, даваемые правительством фермерам liquidity ~ поддержка ликвидности maintenance ~ поддержка, помощь на содержание maintenance ~ поддержка в техническом обслуживании monetary ~ денежная поддержка multitasking ~ вчт. средства многозадачности price ~ гарантирование цен price ~ поддержание курсов ценных бумаг price ~ поддержание цен price ~ поддержание цен на приемлемом для производителя уровне (используя таможенные пошлины, квотирование импорта и т. д.) to lend (или to give) ~ (to) оказывать поддержку;
    price supports амер. субсидии, даваемые правительством фермерам public ~ общественная поддержка software ~ вчт. программная поддержка ~ поддержка;
    in support of в подтверждение;
    to speak in support of... поддерживать, защищать... support выдерживать, сносить ~ закупка для поддержания цен ~ защищать ~ театр. редк. играть (роль) ~ интервенционная скупка ~ кормилец (семьи) ~ материально-техническое обеспечение ~ обеспечивать ~ обоснование агрументации ~ обслуживать ~ оказывать поддержку ~ опора, оплот ~ тех. опорная стойка;
    кронштейн;
    штатив ~ поддерживать;
    подпирать ~ поддерживать, подкреплять;
    подтверждать ~ поддерживать;
    способствовать, содействовать ~ поддерживать, подкреплять, подтверждать ~ поддерживать ~ поддерживать курс путем скупки акций ~ поддержка;
    in support of в подтверждение;
    to speak in support of... поддерживать, защищать... ~ поддержка ~ вчт. поддержка ~ поддержка курса акций ~ подтверждать ~ помогать, поддерживать (материально) ;
    содержать (напр., семью) ;
    to support an institution жертвовать на учреждение ~ помогать ~ помощь ~ воен. прикрытие артиллерии ~ содействовать ~ содержать ~ средства к существованию;
    without means of support без средств к существованию ~ помогать, поддерживать (материально) ;
    содержать (напр., семью) ;
    to support an institution жертвовать на учреждение ~ by open-market operations поддержка курса акций путем операций на открытом рынке ~ in the form of liquidity поддержка в форме ликвидности trend ~ поддержание направления развития trend ~ поддержание тенденции whole-hearted ~ единодушная поддержка ~ средства к существованию;
    without means of support без средств к существованию

    Большой англо-русский и русско-английский словарь > support

  • 11 sans parti pris

    объективно, беспристрастно, без какой-либо предвзятости

    Quels sont en effet les caractères essentiels du critique? Il faut que, sans parti pris, sans opinions préconçues, sans attaches avec aucune famille d'artistes, il comprenne, distingue et explique toutes les tendances les plus opposées, les tempéraments les plus contraires, et admette les recherches d'art les plus diverses. (G. de Maupassant, Pierre et Jean.) — Каковы же основные характерные черты критика? Он должен объективно, без каких-либо предвзятых идей, без личных симпатий к какой-либо группе художников понимать, различать и объяснять самые противоположные тенденции, самые различные темпераменты и допускать любые поиски в искусстве.

    Dictionnaire français-russe des idiomes > sans parti pris

  • 12 La Passion de Jeanne d'Arc

       1928 – Франция (оригинальная версия: 2210 м)
         Произв. Société Générale de Films
         Реж. КАРЛ ТЕОДОР ДРЕЙЕР
         Сцен. Карл Теодор Дрейер при участии Жозефа Дельтёя
         Опер. Рудольф Матэ
         Дек. Герман Г. Варм и Жан Юго
         Кост. Валентина Юго
         Оригинальная музыка Виктор Аликс и Лео Пугэ
         В ролях Рене Фальконетти (Жанна), Эжен Сильвен (епископ Кошон), Морис Шуц (Николя Луазелёр), Луи Раве (Жан Бопер), Андре Берлей (Жан д'Эстиве), Антонен Арто (Жан Массье), Жильбер Даллё (инквизитор Жан Леметр), Жан д'Ид (Николя де Упвилль), Поль Делозак (Мартен Ладвеню), Арман Люрвиль, Жак Арна, Александр Михалеску, Реймон Нарлей, Анри Майар, Мишель Симон, Жан Эйм, Леон Ларив, Поль Жорж (судьи).
       Процесс над Жанной д'Арк проходит в Руане 14 февраля 1431 г. Он начинается в помещении суда: судьи расспрашивают Жанну о ее жизни, призвании, о явлениях святого Михаила. На вопрос о том, зачем она носит мужское платье, Жанна отвечает, что снимет его, как только завершит свою миссию. Она надеется, что Бог спасет ее душу. Она не признает судей и просит отвести ее к Папе; в этом ей отказывают. Допрос продолжается в камере Жанны. Чтобы направить процесс в русло, угодное судьям, Николя Луазелёр пишет поддельное письмо от короля Карла, адресованное Жанне. Поскольку та не умеет читать, Николя читает ей письмо вслух. В этом письме король советует Жанне во всем полагаться на Луазелёра, ее покровителя и защитника. Теперь, прежде чем ответить на некоторые вопросы, она советуется с ним взглядом. Луазелёр подсказывает ей ответить утвердительно на вопрос, уверена ли она в своем прощении. На вопрос: «Пребываете ли вы в благодати?» – Луазелёр, желая погубить Жанну, не реагирует никак. Жанна отвечает: «Если пребываю, да поможет мне Господь сохранить ее; если не пребываю, да поможет мне Господь добиться ее». Она страстно желает выслушать мессу, но отказывается снять ради этого мужское платье.
       Готовят пытку. 3 стражника издеваются над Жанной: один силой снимает с нее кольцо, другой надевает ей на голову соломенную корону. Ее отводят в камеру пыток. Она отказывается письменно отречься от своих слов. Испугавшись вида пыточных инструментов, она заявляет, что даже если ее заставят говорить силой, позднее она откажется от сказанного. Она падает в обморок. Ее относят на койку. Ей делают кровопускание. Она просит, чтобы ей принесли причастие, при виде его очень радуется, но причастие у нее отнимают, когда она снова отказывается подписать отречение. Она называет судей посланниками дьявола. Для последнего допроса ее отводят на кладбище неподалеку от места казни. Она подписывает акт отречения. Ей говорят, что отныне она возвращается в лоно церкви, но будет приговорена к пожизненному заключению. Жанне остригают волосы. Она просит вновь созвать судей. «Я солгала, – говорит она. – Я отреклась от Господа, чтобы остаться в живых». По округе расходится весть о том, что Жанна отказалась от своих слов. Одетая в платье кающейся грешницы, она поднимается на костер. Ее привязывают к столбу. Огонь пожирает ее. Очевидец казни говорит: «Вы сожгли святую». Английским солдатам приходится подавлять бунт, охвативший Руан и окрестности.
        Как и в случае с Фрицем Лангом некоторое время спустя, короткое пребывание Дрейера во Франции выпало на период исканий и экспериментов, за которыми, как и у Ланга, без сомнения, кроется глубокая неуверенность в будущем направлении своей карьеры. В этот период появляются на свет 2 отрывочные и во многих отношениях парадоксальные картины – Страсти Жанны д'Арк и Вампир, Vampyr, 1932, – которые ждала невероятная слава: откровенно говоря, преувеличенная по сравнению с их подлинными достоинствами. В случае со Страстями Жанны д Арк очень частое использование крупного плана в процессе над Жанной, решающий стилистический элемент фильма, сперва вызвал удивление у публики, а затем помог картине завоевать огромный успех. Однако следует напомнить, что поначалу Дрейер намеревался снять звуковой фильм, и только техническая накладка (отсутствие подходящего оборудования на французских студиях) помешала ему этого добиться. Изобилие крупных планов, несомненно, показалось бы почти нормальным явлением в звуковой картине, но в немом фильме стало чрезвычайно зрелищным и заметным элементом, особенно когда к этим многочисленным крупным планам приклеили титры, разъясняющие их содержание. Крупные планы немедленно превратились в почти авангардистский прием, и Страсти Жанны д'Арк стали одним из немногих фильмов, которые обязаны местом в истории кино своему экспериментальному характеру (в данном случае – наполовину случайному).
       Надо сказать, что в самой концепции фильма заложена определенная фрагментарность, которая, возможно, напрашивалась на использование подобной специфической техники. В самом деле, рассмотреть фигуру Жанны д'Арк только в свете ее процесса и последних часов жизни означает заведомо отказаться от попыток создать цельный образ этой женщины и ее судьбы (разумеется, если не вводить в действие флэшбеки); образ, который был бы одновременно и аналитичен, и достоверно воплощен. Как мы понимаем, в этом ракурсе сотрудничество с Дельтёем ничего не дало. Если Дельтёй интересовался Жанной д'Арк и, по его собственным словам, «перевел ее через археологическую пустыню» (см. его предисловие к книге «Жанна д'Арк» [Joseph Delteuil, Jeanne d'Arc, Grasset, 1925]), то лишь затем, чтобы помочь ей вновь обрести максимально естественный и осязаемый облик. Дрейер ставил перед собой совсем другую цель. Он хотел раскрыть ее образ реалистично и экономно (оба подхода в равной степени чужды Дельтёю). В фильме эти тенденции отнюдь не дополняют друг друга: наоборот, чаще всего они противоречат и рвут друг друга на части. С одной стороны, реализм требует «репортажности» (термин, взятый в оборот Кокто, большим поклонником фильма в те годы); с другой – из стремления к экономности Дрейер сосредоточил все действие картины – процесс и казнь – в рамках единственного дня. Немалую часть экранного времени Жанна находится в кадре одна, что усиливает выразительность и мощь героини; при этом отсутствие конкретного социального, исторического и даже нравственного контекста, который обрамлял бы ее жизненный путь, сильно вредит реализму фильма. Человеку, ничего не знающему о Жанне и ее истории, фильм наверняка показался бы непонятным и почти абсурдным – не репортажем о некой исторической реальности, а документом из другого мира, странного, неясного и непостижимого. В этом, возможно, своеобразное достоинство фильма, но к реализму оно отношения не имеет. Впрочем, в этом фильме великий Дрейер появляется перед нами лишь в последних сценах, в последней трети, чьим началом можно считать обморок Жанны в камере пыток, за которым следует ее отречение, затем отказ от него и смерть на костре среди бунтующей толпы.
       Что касается собственно персонажа, Дрейер хотел показать в Жанне страдающую женщину, терпящую всяческие издевательства: не воина, а жертву; не победительницу, а мученицу. Божественная свежесть, непосредственность, гениальная дерзость Жанны (черты, отчетливее всего проявляющиеся в протоколах суда над ней) исчезли из этого образа. Столь узкое и ограниченное видение, несомненно, имело для Дрейера лишь одно оправдание: оно должно было послужить отправной точкой для чистого упражнения в стиле. Именно это мы и имеем перед глазами, а в качестве бонуса – финал, достойный предыдущих фильмов режиссера.
       N.B. История создания фильма изучена многими исследователями (см. БИБЛИОГРАФИЮ); вкратце ее можно пересказать следующим образом. После того как Почитай свою жену, Du skal aere din hustru с успехом прошел во французском прокате, к Дрейеру обратилась с предложением парижская компания «Omnium». Дрейер обдумывает 3 темы, 3 портрета: Иисус, Медея, Жанна д'Арк. Другие источники указывают, что ему предложили на выбор Марию-Антуанетту, Екатерину Медичи, Жанну д'Арк. Полемика, вызванная произведениями Бернарда Шоу, Анатоля Франса и др., выводит Орлеанскую деву на 1-й план и подталкивает Дрейера к 3-му варианту. Компания-производитель планирует утвердить на роль Лиллиан Гиш, но этот выбор вызывает протесты «националистического» толка. Дрейер в то же время думает о Мадлен Рено и Мари Белль (которая отказывается сниматься из-за сцены пострига). Тогда-то Дрейер и находит Рене Фальконетти – актрису, из классического театра попавшую на сцену театра уличного. Их встреча становится судьбоносной и для фильма, и для актрисы: роль Жанны так и останется единственной работой Фальконетти в кино, зато слава ее не увядает и по сей день. (Таким образом, Дрейер задолго до Брессона воплощает в жизнь мечту последнего, который, начиная с Приговоренный к смерти бежал, Un condamné à mort s'est échappé*, мечтал о том, чтобы его актеры не снимались больше ни у кого.) При том, что ее работу вовсе не обязательно считать гениальной, стоит признать, что Фальконетти со всей полнотой выражает болезненный и экстравертный образ героини, придуманный Дрейером. В ее игре нет никакого погружения в себя, за что ее жестоко критикует Брессон, чемпион по самокопанию в кинематографе, который адресует свои обвинения всем актерам сразу: «Я понимаю, что в свое время этот фильм совершил маленькую революцию, но сегодня я не вижу ни в одном актере ничего, кроме страшного кривляния, чудовищных гримас, от которых хочется бежать».
       Окружив себя 1-классными специалистами (художники по декорациям – Герман Варм, создатель Кабинета доктора Калигари, Das Cabinet des Dr. Caligari, и Жан Юго; художник по костюмам – Валентина Юго; оператор-постановщик – Рудольф Матэ), Дрейер снимает картину в хронологической последовательности сцен с марта по ноябрь 1927 г. Он тратит целое состояние, поскольку фильм обошелся в 8 млн франков – сумма, которая кажется несоразмерной с тем, что мы видим на экране, особенно в сравнении с 11 млн, потраченными на Наполеона, Napoléon Ганса (произведенного той же фирмой). На съемочной площадке кульминацией проекта стала сцена пострига. Фальконетти до последнего момента верила, что ей удастся избежать этой пытки, но Дрейер был непреклонен: «Все произошло в студии, и это была целая история: она плакала, плакала, плакала, она не хотела! Она была готова оплатить самый дорогой парик. Дрейер пытался ее утешить и говорил, что волосы отрастут снова. Он уговорил Матэ спять несколько планов, пока она ревела, и мне кажется, если мне не изменяет память, что некоторые были вставлены в сцену на костре». (Свидетельство ассистента режиссера Ральфа Хольма в журнале «L'Avant-Scène», № 367–368.)
       Самые серьезные неприятности ждали фильм после окончания съемок. Он вышел на экраны в апреле 1928 г. в Копенгагене, где был принят неоднозначно; затем, в октябре того же года, – в Париже. Между этими 2 премьерами лента претерпела не одно вмешательство официальной и религиозной цензуры. В декабре 1928 г. негатив фильма сгорел при пожаре на студии «UFA» в Берлине. 2-й негатив, восстановленный Дрейером из сохранившихся дублей, также сгорел при пожаре в следующем году. В 1952 г. Ло Дука представил в Венеции копию, восстановленную по забытому негативу, обнаруженному на студии «Gaumont» (к несчастью, в ней звучит анахроничное музыкальное сопровождение из мелодий Баха, Альбинони и т. д.). Именно с этой копией (впрочем, качественно изданной) познакомились несколько поколений поклонников фильма. Среди других ее недостатков – слишком высокая скорость (24 к/сек вместо 20) и музыкальное сопровождение, мешающее полностью восстановить немой изобразительный ряд.
       В 1981 г. в психиатрической лечебнице в Норвегии была найдена копия, некогда одолженная директору заведения, но так и не возвращенная. Случилось чудо: она оказалась распечатана с 1-го негатива. На основе этого материала датчане восстановили копию (с датскими титрами), которую распечатала с контратипа и перевела «Французская синематека». 1-й показ этой копии в Париже стал поводом для спорных «музыкальных» экспериментов, хотя лучший способ как следует оценить ее – это, несомненно, смотреть ее в тишине, поскольку тишина – самая прекрасная музыка для Дрейера (как, впрочем, и для многих немых картин). Отметим, что эта «новая» копия не так уж заметно отличается от копий более поздних, что бы ни говорили некоторые. Последовательность действия осталась без изменений, титры (за некоторыми исключениями) также совпадают. Основные отличия связаны с некоторыми изменениями в монтаже, главным образом – в выборе других дублей тех же сцен (таким образом, мы имеем возможность наблюдать иные нюансы актерской игры), но это также следует связать с тем хорошо известным фактом, что в эпоху немого кино очень часто можно было найти различия в копиях одного фильма, предназначенных для разных стран. (Мы имели возможность сравнить копию Ло Дуки с английской: они также различаются между собой. Впрочем, в обеих содержится удивительная сцена кровопускания, к которой последняя, датская, копия не добавляет ничего нового.) Наконец, напомним, что, по мнению историков, огромный успех у критики фильма Дрейера полностью затмил коммерческий успех Чудесной жизни Жанны д'Арк, La merveilleuse vie de Jeanne d'Arc, 1929, Марко Де Гастина. Сегодня эта картина вновь открыта и оценена по достоинству, и можно прийти к выводу, что честный классицизм этой биографии, по крайней мере, недостоин звания «гигантской халтуры», которым ее удостоил в 1970 г. автор статьи о фильме Дрейера в журнале «L'Avant-Scène» (№ 100).
       Фальконетти осталась самой знаменитой экранной Жанной. Персонаж святой привлекал к себе интерес кинематографа с 1-х лет его истории (см. Казнь Жанны д'Арк, L'exécution de Jeanne d'Arc, 1898, короткометражка из каталога Люмьеров, чье авторство приписывается Жоржу Ато; Жанна д'Арк Мельеса, Jeanne d'Arc, 1900, раскрашенная вручную; Жанна д'Арк Капеллани, 1909). Упомянем некоторых исполнительниц роли Жанны, оставивших след в зрительской памяти: Джералдина Фаррар в фильме Де Милля Женщина Жанна, Joan the Woman, 1916, 1-й крупнобюджетной постановке режиссера, где громче всего слышны бряцание оружия и грохот сражений, а захватывающие кадры осады служат метафорой окопов Первой мировой войны, с которых и начинается фильм (и тут уже англичане – не враги, а союзники); Симона Женевуа в Чудесной жизни Жанны д'Арк Марко де Гастина, выпущенной на экраны в то же время, что и картина Дрейера (здесь актриса, как и позднее Джин Сибёрг у Преминджера – ровесница своей героини); Ангела Саллокер, единственная (?) Жанна 30-х гг., в малоизвестном фильме Уцицки Дева Жанна, Das Mädchen Johanna, 1935, с Густафом Грюндгенсом (Карл VII) и Генрихом Георгом (герцог Бургундский) (в этом фильме, как говорят исследователи, Жанна, увы, обладает сходством с Гитлером); Ингрид Бергман в Жанне д'Арк, Joan of Arc Флеминга и Жанне на кос тре, Giovanno d'Arco al rogo, 1954 – странной, навязчивой, авангардистской картине Росселлини, поставленной по оратории Клоделя (в ней в конечном счете больше от Клоделя, чем от Росселлини); Мишель Морган во 2-й новелле фильма Судьбы, Destinées, 1954, поставленной Жаном Деланнуа; Хеди Ламарр в Истории человечества, History of Mankind, 1957, Ирвина Аллена (что бы там ни казалось на 1-й взгляд, выбор Хеди Ламарр на роль Жанны – еще не самое нелепое решение в фильме, где роль Наполеона играет Деннис Хоппер, а роль Ньютона – Харио Маркс); Джин Сибёрг в Святой Иоанне, Saint Joan Преминджера, отобранная из 2000 претенденток и, на наш взгляд, затмевающая всех остальных. Наконец, отметим для проформы Флоранс Делей в Процессе Жанны д'Арк, Procès de Jeanne d'Arc, 1962, Брессон, Жанну-интеллектуалку, нарочито «отсутствующую» и совершенно неубедительную. Самая последняя (хронологически) Жанна, достойная упоминания, – прекрасная Инна Чурикова в Начале * Панфилова (1970), свободной вариации на тему судьбы нашей героини, увиденной глазами актрисы, пытающейся сыграть ее роль в кино.
       БИБЛИОГРАФИЯ: новеллизация Пьера Бо в серии «Романтический кинематограф» (Pierre Bost, Le cinéma romanesque, Gallimard, 1928) с текстами Кокто, Жака де Лакретеля, Поля Морана. La Passione di Giovanna d'Arco di Carl Theodor Dreyer, Milan, Editoriale Domus, 1951 – реконструкция фильма в фоторепродукциях. Five Films of Carl Theodor Dreyer, Copenhagues, Gyldendal, 1964 – рабочие сценарии Страстей Жанны д'Арк, Вампира, Дня гнева, Vredens dag, 1943, Слова, Ordet. Англ. перевод предыдущего издания: Four Screenplays, London, Hiames and Hudson, 1970. Ит. перевод с добавленным сценарием Гертруды, Gertrud, 1964: Cinque Film, Turin, Einaudi, 1967. Рабочий сценарий Страстей Жанны д'Арк опубликован на фр. языке в: Carl Th. Dreyer, Œuvres cinématographiques 1926–1934, Cinémathèque Française, 1983. Обзор Страстей Жанны д'Арк в журнале «L'Avant-Scène» № 100 (1970) с отрывками из статьи Жана Дельма, опубликованной в журнале «Jeune Cinéma» (февраль 1965 г.). Раскадровка по последней найденной копии (1343 плана и 174 титра) в журнале «L'Avant-Scène», № 367–368 (1988). Это основной труд, который следует использовать при работе со Страстями Жанны д'Арк. Сюда же входят воспоминания участников работы над фильмом и статьи Клода Бейли, Мориса Друзи, Венсана Пинеля и т. д. См. также: специальный номер журнала «Études cinématographiques» (№ 18–19, 1962), посвященный экранным образам Жанны д'Арк; фундаментальную биографию Мориса Друзи «Карл Теодор Дрейер, урожденный Нильссон» (Maurice Drouzy, Carl Theodor Dreyer né Nilsson, Les Éditions du Cerf, 1987); симпатичную и хорошо документированную биографию Рене Фальконетти, написанную ее дочерью Элен (Hélène Falconetti, Falconetti, Les Éditions du Cerf, 1987). Добавим, что раскадровка копии, напечатанной со 2-го негатива, опубликована в 1980 г. «Югославской синематекой»: это описание 1140 планов, проиллюстрированное таким же количеством фоторепродукций. Что касается книги Жозефа Дельтёя «Страсти Жанны д'Арк» (Joseph Delteuil, La Passion de Jeanne d'Arc, Éditions M.-P. Trémois, 1927), написанной по случаю выхода фильма Дрейера, то, несмотря на слова самого автора в предисловии, называющего ее «путешествием Литературы в край Кинематографа», она не имеет почти никакого отношения к фильму. (Дельтёй включил туда 2 главы из своей «Жанны д'Арк», написанной для серии «Зеленые тетради» [Cahiers Verts, Grasset, 1925]). Наконец, в статье, опубликованной в «Бюллетене Французской ассоциации исследователей истории кинематографа» (Bulletin de l'Association Française de Recherche sur l'Histoire du Cinéma, № 3, 1987), Морис Друзи ставит вопрос о том, «кому принадлежит Жанна д'Арк Дрейера?», После банкротства «SGF» в 1932–1933 гг. ни Ло Дука, ни студия «Gaumont» не стали легальными правообладателями фильма, хотя долгое время использовали его в прокате. Следовательно, на данный момент вопрос остается без ответа. «Ситуация, – пишет автор, – которую вполне можно назвать гротесковой». Об экранных образах Жанны д'Арк читайте «Études cinématographiques», № 18–19 (1962), «Cahiers de la cinémathèque», Toulouse, № 42–43 (1985) и статью «Жанна д'Арк», написанную Венсаном Пинелем для «Словаря кинематографических персонажей» (Vincent Pinel, Dictionnaire des personnages du cinéma, Bordas, 1988).

    Авторская энциклопедия фильмов Жака Лурселля > La Passion de Jeanne d'Arc

  • 13 Westworld

       1973 – США (88 мин)
         Произв. MGM (Пол Н. Лазарус III)
         Реж. МАЙКЛ KPAЙTOH
         Сцен. Майкл Крайтон
         Опер. Джин Полито (Metrocolor)
         Муз. Фред Карлин
         В ролях Юл Бриннер (ковбой), Ричард Бенджамин (Питер Мартин), Джеймс Бролин (Джон Блейн), Алан Оппенхаймер (старший наблюдатель), Виктория Шоу (королева), Дик Ван Пэттен (банкир), Линда Скотт (Арлетт).
       Развлекательный центр «Делос» за 1000 долларов в день предлагает своим клиентам возможность прожить наяву и реализовать свои фантазии в 3 разных мирах: в Древнем Риме времен Помпеи среди дворцов, пиров, всеобщего распутства; в Средневековье, мире рыцарских турниров и романтической любви; на Диком Западе 1880 г. среди первопроходцев и бандитов, в мире затаенной или бушующей жестокости. Гражданский адвокат Питер Мартин и его друг Джон Блейн, давний клиент центра, выбирают Дикий Запад. Им выдают ковбойскую одежду; их отводят в комнату – не особо уютную, зато тщательно воссозданную, не лучше и не хуже гостиничного номера того времени. Блейн посвящает друга в правила этого мира и говорит, что все люди, которых они встретят в нем, за исключением клиентов – очень высокотехнологичные роботы. В баре Мартина задирает агрессивный ковбой, весь одетый в черное, с тяжелым металлическим взглядом, и Мартин разряжает в него револьвер. Труп уносят. Блейн уточняет, что если бы его друг попытался застрелить живого человека, оружие бы не сработало. В таверне друзья уединяются с 2 довольно легкомысленными девицами, которые предлагают им развлечься. Это тоже роботы, но клиенты остаются довольны их услугами.
       Ночью работники центра собирают «трупы», оставшиеся после нападения на банк. Затем роботов чинят в подземной лаборатории. Главный инженер обеспокоен учащением поломок, которые распространяются среди роботов без всякой логической причины, словно заразная болезнь. В 5 утра центр вновь возвращается к работе. Вчерашний агрессивный ковбой на этот раз угрожает Блейну. Мартин приходит на помощь, стреляет в него, и нападавший вылетает в окно. Мартина сажают в тюрьму. После подрыва стены в тюрьме (устроенного, конечно же, работниками центра) ему удается сбежать. Он находит друга и отправляется с ним на прогулку по горе, где Блейна кусает – по-настоящему – гремучая змея. Этот инцидент – еще одно доказательство сбоя в программе роботов. Инженер предлагает полностью закрыть центр. В средневековом мире служанка дает пощечину клиенту, одетому в господские одежды, который пытался за ней приударить (еще один сбой). Когда этот же клиент флиртует с королевой (эпизод, добавленный в сценарий игры по его настоянию), Черный Принц вызывает его на дуэль и пронзает мечом; и вот этого уже организаторы не предусматривали совсем.
       Мартин и Блейн снова встречают агрессивного ковбоя. «Опять ты!» – кричит Мартин. Ковбой убивает – по-настоящему ― Джона Блейна. Мартин не верит своим глазам, он напуган и пытается ускакать от ковбоя. Начинается долгая погоня. Мартин скачет через античный мир, в котором происходит резня (роботы убивают клиентов). В подземелье погибают от удушья работники центра, попавшие в плен системы автоматического закрывания дверей. Мартин остается без лошади, и его догоняет враг; Мартин плещет ему в лицо кислотой, но это не помогает. Мартин скрывается в средневековом мире, но и там ковбой продолжает гнаться за ним. Мартин ослепляет его факелами и поджигает. Робот вспыхивает как спичка, и все равно тянется к Мартину до последнего, пока не расплавляется окончательно. Мартин ошеломлен: он понимает, что остался жив только чудом.
         1-й фильм, снятый Майклом Крайтоном, прежде известным только как автор популярных романов («Штамм „Андромеда“» [The Andromeda Strain] был великолепно экранизирован Робертом Уайзом в 1971 г., а «Опасный пациент» [The Terminal Man] – далеко не столь великолепно, но все же довольно выразительно – Майком Ходжесом в 1974 г.). Эта оригинальная, мастерская картина выдержана в классическом стиле, и иногда ее хочется двинуть чуть дальше в любом направлении: в эксцентричности, научной фантастике, нравственной аллегории и аллегории в целом. Эксцентричность постоянно присутствует в сюжете, хотя ее строго сдерживает режиссерский стиль, чурающийся излишней причудливости. Отметим хотя бы финальную погоню, когда спятивший кровожадный робот-ковбой преследует адвоката, переодетого колонистом, на фоне декораций средневекового замка. Со скрытым, но вполне ощутимым юмором Крайтон раскрывает одну из ключевых тем научной фантастики: бунт машин, в данном случае – роботов. В глазах их создателей-людей бунт, борьба за освобождение трактуется как поломка, механический сбой. На уровне фантастики эта «болезнь» становится местью за жестокость человека и при этом – плодом этой заразительной жестокости. Юл Бриннер, великолепно вписавшийся в роль, которую он не раз играл в реалистических вестернах (Великолепная семерка, The Magnificent Seven, Джон Стёрджес, 1961, и, главное, превосходное Приглашение стрелку, Invitation to a Gunlighter, Ричард Уилсон, 1964), своей игрой подчеркивает роботизированный характер насилия: немого и пассивного подчинения самому слепому и механическому инстинкту свойственному человеческой природе. В самом деле, фильм становится аллегорией насилия в современном обществе. Перестав быть жизненной необходимостью, насилие теперь подавляется в людях. Попав под запрет, оно стало источником нездорового наслаждения, и развлекательный центр «Делос» пытается подарить его клиентам на уровне воображения; но от воображаемого до реального – всего один шаг, и клиенты центра сделают этот шаг ценой собственной жизни. Наконец, в самом глобальном контексте, фильм можно рассматривать как аллегорию чтения или просмотра кинофильмов. Ведь в самом деле каждые книга и фильм предлагают читателям / зрителям возможность без риска для себя пережить чувства и опасности при помощи персонажей, воплощающих тенденции, запрещенные или подавляемые в нашем повседневном существовании.
       N.В. Продолжение, гораздо более бесцветное: Мир будущего, Futureworld, Ричард Т. Хеффрон, 1976.
       БИБЛИОГРАФИЯ: режиссерский сценарий (на 90 % совпадающий с реальным фильмом) опубликован в карманном формате (Bantam, New York, 1974). В предисловии Крайтон рассказывает о съемках, финансовых трудностях («MGM» не верила в фильм) и травмах, полученных актерами. Он пишет, что стремился к трезвому, реалистичному и внятному режиссерскому стилю, который бы контрастировал со странностью происходящего и тем самым подчеркивал бы ее.

    Авторская энциклопедия фильмов Жака Лурселля > Westworld

  • 14 программируемый логический контроллер

    1. speicherprogrammierbare Steuerung, f

     

    программируемый логический контроллер
    ПЛК
    -
    [Интент]

    контроллер
    Управляющее устройство, осуществляющее автоматическое управление посредством программной реализации алгоритмов управления.
    [Сборник рекомендуемых терминов. Выпуск 107. Теория управления.
     Академия наук СССР. Комитет научно-технической терминологии. 1984 г.]

    EN

    storage-programmable logic controller
    computer-aided control equipment or system whose logic sequence can be varied via a directly or remote-control connected programming device, for example a control panel, a host computer or a portable terminal
    [IEV ref 351-32-34]

    FR

    automate programmable à mémoire
    équipement ou système de commande assisté par ordinateur dont la séquence logique peut être modifiée directement ou par l'intermédiaire d'un dispositif de programmation relié à une télécommande, par exemple un panneau de commande, un ordinateur hôte ou un terminal de données portatif
    [IEV ref 351-32-34]

      См. также:
    - архитектура контроллера;
    - производительность контроллера;
    - время реакции контроллера;
    КЛАССИФИКАЦИЯ

      Основным показателем ПЛК является количество каналов ввода-вывода. По этому признаку ПЛК делятся на следующие группы: По расположению модулей ввода-вывода ПЛК бывают:
    • моноблочными - в которых устройство ввода-вывода не может быть удалено из контроллера или заменено на другое. Конструктивно контроллер представляет собой единое целое с устройствами ввода-вывода (например, одноплатный контроллер). Моноблочный контроллер может иметь, например, 16 каналов дискретного ввода и 8 каналов релейного вывода;
    • модульные - состоящие из общей корзины (шасси), в которой располагаются модуль центрального процессора и сменные модули ввода-вывода. Состав модулей выбирается пользователем в зависимости от решаемой задачи. Типовое количество слотов для сменных модулей - от 8 до 32;
    • распределенные (с удаленными модулями ввода-вывода) - в которых модули ввода-вывода выполнены в отдельных корпусах, соединяются с модулем контроллера по сети (обычно на основе интерфейса RS-485) и могут быть расположены на расстоянии до 1,2 км от процессорного модуля.
    Часто перечисленные конструктивные типы контроллеров комбинируются, например, моноблочный контроллер может иметь несколько съемных плат; моноблочный и модульный контроллеры могут быть дополнены удаленными модулями ввода-вывода, чтобы увеличить общее количество каналов.

    Многие контроллеры имеют набор сменных процессорных плат разной производительности. Это позволяет расширить круг потенциальных пользователей системы без изменения ее конструктива.

    По конструктивному исполнению и способу крепления контроллеры делятся на:
    По области применения контроллеры делятся на следующие типы:
    • универсальные общепромышленные;
    • для управления роботами;
    • для управления позиционированием и перемещением;
    • коммуникационные;
    • ПИД-контроллеры;
    • специализированные.

    По способу программирования контроллеры бывают:
    • программируемые с лицевой панели контроллера;
    • программируемые переносным программатором;
    • программируемые с помощью дисплея, мыши и клавиатуры;
    • программируемые с помощью персонального компьютера.

    Контроллеры могут программироваться на следующих языках:
    • на классических алгоритмических языках (C, С#, Visual Basic);
    • на языках МЭК 61131-3.

    Контроллеры могут содержать в своем составе модули ввода-вывода или не содержать их. Примерами контроллеров без модулей ввода-вывода являются коммуникационные контроллеры, которые выполняют функцию межсетевого шлюза, или контроллеры, получающие данные от контроллеров нижнего уровня иерархии АСУ ТП.   Контроллеры для систем автоматизации

    Слово "контроллер" произошло от английского "control" (управление), а не от русского "контроль" (учет, проверка). Контроллером в системах автоматизации называют устройство, выполняющее управление физическими процессами по записанному в него алгоритму, с использованием информации, получаемой от датчиков и выводимой в исполнительные устройства.

    Первые контроллеры появились на рубеже 60-х и 70-х годов в автомобильной промышленности, где использовались для автоматизации сборочных линий. В то время компьютеры стоили чрезвычайно дорого, поэтому контроллеры строились на жесткой логике (программировались аппаратно), что было гораздо дешевле. Однако перенастройка с одной технологической линии на другую требовала фактически изготовления нового контроллера. Поэтому появились контроллеры, алгоритм работы которых мог быть изменен несколько проще - с помощью схемы соединений реле. Такие контроллеры получили название программируемых логических контроллеров (ПЛК), и этот термин сохранился до настоящего времени. Везде ниже термины "контроллер" и "ПЛК" мы будем употреблять как синонимы.

    Немного позже появились ПЛК, которые можно было программировать на машинно-ориентированном языке, что было проще конструктивно, но требовало участия специально обученного программиста для внесения даже незначительных изменений в алгоритм управления. С этого момента началась борьба за упрощение процесса программирования ПЛК, которая привела сначала к созданию языков высокого уровня, затем - специализированных языков визуального программирования, похожих на язык релейной логики. В настоящее время этот процесс завершился созданием международного стандарта IEC (МЭК) 1131-3, который позже был переименован в МЭК 61131-3. Стандарт МЭК 61131-3 поддерживает пять языков технологического программирования, что исключает необходимость привлечения профессиональных программистов при построении систем с контроллерами, оставляя для них решение нестандартных задач.

    В связи с тем, что способ программирования является наиболее существенным классифицирующим признаком контроллера, понятие "ПЛК" все реже используется для обозначения управляющих контроллеров, которые не поддерживают технологические языки программирования.   Жесткие ограничения на стоимость и огромное разнообразие целей автоматизации привели к невозможности создания универсального ПЛК, как это случилось с офисными компьютерами. Область автоматизации выдвигает множество задач, в соответствии с которыми развивается и рынок, содержащий сотни непохожих друг на друга контроллеров, различающихся десятками параметров.

    Выбор оптимального для конкретной задачи контроллера основывается обычно на соответствии функциональных характеристик контроллера решаемой задаче при условии минимальной его стоимости. Учитываются также другие важные характеристики (температурный диапазон, надежность, бренд изготовителя, наличие разрешений Ростехнадзора, сертификатов и т. п.).

    Несмотря на огромное разнообразие контроллеров, в их развитии заметны следующие общие тенденции:
    • уменьшение габаритов;
    • расширение функциональных возможностей;
    • увеличение количества поддерживаемых интерфейсов и сетей;
    • использование идеологии "открытых систем";
    • использование языков программирования стандарта МЭК 61131-3;
    • снижение цены.
    Еще одной тенденцией является появление в контроллерах признаков компьютера (наличие мыши, клавиатуры, монитора, ОС Windows, возможности подключения жесткого диска), а в компьютерах - признаков контроллера (расширенный температурный диапазон, электронный диск, защита от пыли и влаги, крепление на DIN-рейку, наличие сторожевого таймера, увеличенное количество коммуникационных портов, использование ОС жесткого реального времени, функции самотестирования и диагностики, контроль целостности прикладной программы). Появились компьютеры в конструктивах для жестких условий эксплуатации. Аппаратные различия между компьютером и контроллером постепенно исчезают. Основными отличительными признаками контроллера остаются его назначение и наличие технологического языка программирования.

    [ http://bookasutp.ru/Chapter6_1.aspx]  
    Программируемый логический контроллер (ПЛК, PLC) – микропроцессорное устройство, предназначенное для управления технологическим процессом и другими сложными технологическими объектами.
    Принцип работы контроллера состоит в выполнение следующего цикла операций:

    1.    Сбор сигналов с датчиков;
    2.    Обработка сигналов согласно прикладному алгоритму управления;
    3.    Выдача управляющих воздействий на исполнительные устройства.

    В нормальном режиме работы контроллер непрерывно выполняет этот цикл с частотой от 50 раз в секунду. Время, затрачиваемое контроллером на выполнение полного цикла, часто называют временем (или периодом) сканирования; в большинстве современных ПЛК сканирование может настраиваться пользователем в диапазоне от 20 до 30000 миллисекунд. Для быстрых технологических процессов, где критична скорость реакции системы и требуется оперативное регулирование, время сканирования может составлять 20 мс, однако для большинства непрерывных процессов период 100 мс считается вполне приемлемым.

    Аппаратно контроллеры имеют модульную архитектуру и могут состоять из следующих компонентов:

    1.    Базовая панель ( Baseplate). Она служит для размещения на ней других модулей системы, устанавливаемых в специально отведенные позиции (слоты). Внутри базовой панели проходят две шины: одна - для подачи питания на электронные модули, другая – для пересылки данных и информационного обмена между модулями.

    2.    Модуль центрального вычислительного устройства ( СPU). Это мозг системы. Собственно в нем и происходит математическая обработка данных. Для связи с другими устройствами CPU часто оснащается сетевым интерфейсом, поддерживающим тот или иной коммуникационный стандарт.

    3.    Дополнительные коммуникационные модули. Необходимы для добавления сетевых интерфейсов, неподдерживаемых напрямую самим CPU. Коммуникационные модули существенно расширяют возможности ПЛК по сетевому взаимодействию. C их помощью к контроллеру подключают узлы распределенного ввода/вывода, интеллектуальные полевые приборы и станции операторского уровня.

    4.    Блок питания. Нужен для запитки системы от 220 V. Однако многие ПЛК не имеют стандартного блока питания и запитываются от внешнего.  
    4906
    Рис.1. Контроллер РСУ с коммуникациями Profibus и Ethernet.
     
    Иногда на базовую панель, помимо указанных выше, допускается устанавливать модули ввода/вывода полевых сигналов, которые образуют так называемый локальный ввод/вывод. Однако для большинства РСУ (DCS) характерно использование именно распределенного (удаленного) ввода/вывода.

    Отличительной особенностью контроллеров, применяемых в DCS, является возможность их резервирования. Резервирование нужно для повышения отказоустойчивости системы и заключается, как правило, в дублировании аппаратных модулей системы.
     
    4907
    Рис. 2. Резервированный контроллер с коммуникациями Profibus и Ethernet.
     
    Резервируемые модули работают параллельно и выполняют одни и те же функции. При этом один модуль находится в активном состоянии, а другой, являясь резервом, – в режиме “standby”. В случае отказа активного модуля, система автоматически переключается на резерв (это называется “горячий резерв”).

    Обратите внимание, контроллеры связаны шиной синхронизации, по которой они мониторят состояние друг друга. Это решение позволяет разнести резервированные модули на значительное расстояние друг от друга (например, расположить их в разных шкафах или даже аппаратных).

    Допустим, в данный момент активен левый контроллер, правый – находится в резерве. При этом, даже находясь в резерве, правый контроллер располагает всеми процессными данными и выполняет те же самые математические операции, что и левый. Контроллеры синхронизированы. Предположим, случается отказ левого контроллера, а именно модуля CPU. Управление автоматически передается резервному контроллеру, и теперь он становится главным. Здесь очень большое значение имеют время, которое система тратит на переключение на резерв (обычно меньше 0.5 с) и отсутствие возмущений (удара). Теперь система работает на резерве. Как только инженер заменит отказавший модуль CPU на исправный, система автоматически передаст ему управление и возвратится в исходное состояние.

    На рис. 3 изображен резервированный контроллер S7-400H производства Siemens. Данный контроллер входит в состав РСУ Simatic PCS7.
     
     
    4908
    Рис. 3. Резервированный контроллер S7-400H. Несколько другое техническое решение показано на примере резервированного контроллера FCP270 производства Foxboro (рис. 4). Данный контроллер входит в состав системы управления Foxboro IA Series.  
    4909
    Рис. 4. Резервированный контроллер FCP270.
    На базовой панели инсталлировано два процессорных модуля, работающих как резервированная пара, и коммуникационный модуль для сопряжения с оптическими сетями стандарта Ethernet. Взаимодействие между модулями происходит по внутренней шине (тоже резервированной), спрятанной непосредственно в базовую панель (ее не видно на рисунке).

    На рисунке ниже показан контроллер AC800M производства ABB (часть РСУ Extended Automation System 800xA).  
    4910
    Рис. 5. Контроллер AC800M.
     
    Это не резервированный вариант. Контроллер состоит из двух коммуникационных модулей, одного СPU и одного локального модуля ввода/вывода. Кроме этого, к контроллеру можно подключить до 64 внешних модулей ввода/вывода.

    При построении РСУ важно выбрать контроллер, удовлетворяющий всем техническим условиям и требованиям конкретного производства. Подбирая оптимальную конфигурацию, инженеры оперируют определенными техническими характеристиками промышленных контроллеров. Наиболее значимые перечислены ниже:

    1.    Возможность полного резервирования. Для задач, где отказоустойчивость критична (химия, нефтехимия, металлургия и т.д.), применение резервированных конфигураций вполне оправдано, тогда как для других менее ответственных производств резервирование зачастую оказывается избыточным решением.

    2.    Количество и тип поддерживаемых коммуникационных интерфейсов. Это определяет гибкость и масштабируемость системы управления в целом. Современные контроллеры способны поддерживать до 10 стандартов передачи данных одновременно, что во многом определяет их универсальность.

    3.    Быстродействие. Измеряется, как правило, в количестве выполняемых в секунду элементарных операций (до 200 млн.). Иногда быстродействие измеряется количеством обрабатываемых за секунду функциональных блоков (что такое функциональный блок – будет рассказано в следующей статье). Быстродействие зависит от типа центрального процессора (популярные производители - Intel, AMD, Motorola, Texas Instruments и т.д.)

    4.    Объем оперативной памяти. Во время работы контроллера в его оперативную память загружены запрограммированные пользователем алгоритмы автоматизированного управления, операционная система, библиотечные модули и т.д. Очевидно, чем больше оперативной памяти, тем сложнее и объемнее алгоритмы контроллер может выполнять, тем больше простора для творчества у программиста. Варьируется от 256 килобайт до 32 мегабайт.

    5.    Надежность. Наработка на отказ до 10-12 лет.

    6. Наличие специализированных средств разработки и поддержка различных языков программирования. Очевидно, что существование специализированный среды разработки прикладных программ – это стандарт для современного контроллера АСУ ТП. Для удобства программиста реализуется поддержка сразу нескольких языков как визуального, так и текстового (процедурного) программирования (FBD, SFC, IL, LAD, ST; об этом в следующей статье).

    7.    Возможность изменения алгоритмов управления на “лету” (online changes), т.е. без остановки работы контроллера. Для большинства контроллеров, применяемых в РСУ, поддержка online changes жизненно необходима, так как позволяет тонко настраивать систему или расширять ее функционал прямо на работающем производстве.

    8.    Возможность локального ввода/вывода. Как видно из рис. 4 контроллер Foxboro FCP270 рассчитан на работу только с удаленной подсистемой ввода/вывода, подключаемой к нему по оптическим каналам. Simatic S7-400 может спокойно работать как с локальными модулями ввода/вывода (свободные слоты на базовой панели есть), так и удаленными узлами.

    9.    Вес, габаритные размеры, вид монтажа (на DIN-рейку, на монтажную панель или в стойку 19”). Важно учитывать при проектировании и сборке системных шкафов.

    10.  Условия эксплуатации (температура, влажность, механические нагрузки). Большинство промышленных контроллеров могут работать в нечеловеческих условиях от 0 до 65 °С и при влажности до 95-98%.

    [ http://kazanets.narod.ru/PLC_PART1.htm]

    Тематики

    Синонимы

    EN

    DE

    • speicherprogrammierbare Steuerung, f

    FR

    Русско-немецкий словарь нормативно-технической терминологии > программируемый логический контроллер

  • 15 automate programmable à mémoire

    1. программируемый логический контроллер

     

    программируемый логический контроллер
    ПЛК
    -
    [Интент]

    контроллер
    Управляющее устройство, осуществляющее автоматическое управление посредством программной реализации алгоритмов управления.
    [Сборник рекомендуемых терминов. Выпуск 107. Теория управления.
     Академия наук СССР. Комитет научно-технической терминологии. 1984 г.]

    EN

    storage-programmable logic controller
    computer-aided control equipment or system whose logic sequence can be varied via a directly or remote-control connected programming device, for example a control panel, a host computer or a portable terminal
    [IEV ref 351-32-34]

    FR

    automate programmable à mémoire
    équipement ou système de commande assisté par ordinateur dont la séquence logique peut être modifiée directement ou par l'intermédiaire d'un dispositif de programmation relié à une télécommande, par exemple un panneau de commande, un ordinateur hôte ou un terminal de données portatif
    [IEV ref 351-32-34]

      См. также:
    - архитектура контроллера;
    - производительность контроллера;
    - время реакции контроллера;
    КЛАССИФИКАЦИЯ

      Основным показателем ПЛК является количество каналов ввода-вывода. По этому признаку ПЛК делятся на следующие группы: По расположению модулей ввода-вывода ПЛК бывают:
    • моноблочными - в которых устройство ввода-вывода не может быть удалено из контроллера или заменено на другое. Конструктивно контроллер представляет собой единое целое с устройствами ввода-вывода (например, одноплатный контроллер). Моноблочный контроллер может иметь, например, 16 каналов дискретного ввода и 8 каналов релейного вывода;
    • модульные - состоящие из общей корзины (шасси), в которой располагаются модуль центрального процессора и сменные модули ввода-вывода. Состав модулей выбирается пользователем в зависимости от решаемой задачи. Типовое количество слотов для сменных модулей - от 8 до 32;
    • распределенные (с удаленными модулями ввода-вывода) - в которых модули ввода-вывода выполнены в отдельных корпусах, соединяются с модулем контроллера по сети (обычно на основе интерфейса RS-485) и могут быть расположены на расстоянии до 1,2 км от процессорного модуля.
    Часто перечисленные конструктивные типы контроллеров комбинируются, например, моноблочный контроллер может иметь несколько съемных плат; моноблочный и модульный контроллеры могут быть дополнены удаленными модулями ввода-вывода, чтобы увеличить общее количество каналов.

    Многие контроллеры имеют набор сменных процессорных плат разной производительности. Это позволяет расширить круг потенциальных пользователей системы без изменения ее конструктива.

    По конструктивному исполнению и способу крепления контроллеры делятся на:
    По области применения контроллеры делятся на следующие типы:
    • универсальные общепромышленные;
    • для управления роботами;
    • для управления позиционированием и перемещением;
    • коммуникационные;
    • ПИД-контроллеры;
    • специализированные.

    По способу программирования контроллеры бывают:
    • программируемые с лицевой панели контроллера;
    • программируемые переносным программатором;
    • программируемые с помощью дисплея, мыши и клавиатуры;
    • программируемые с помощью персонального компьютера.

    Контроллеры могут программироваться на следующих языках:
    • на классических алгоритмических языках (C, С#, Visual Basic);
    • на языках МЭК 61131-3.

    Контроллеры могут содержать в своем составе модули ввода-вывода или не содержать их. Примерами контроллеров без модулей ввода-вывода являются коммуникационные контроллеры, которые выполняют функцию межсетевого шлюза, или контроллеры, получающие данные от контроллеров нижнего уровня иерархии АСУ ТП.   Контроллеры для систем автоматизации

    Слово "контроллер" произошло от английского "control" (управление), а не от русского "контроль" (учет, проверка). Контроллером в системах автоматизации называют устройство, выполняющее управление физическими процессами по записанному в него алгоритму, с использованием информации, получаемой от датчиков и выводимой в исполнительные устройства.

    Первые контроллеры появились на рубеже 60-х и 70-х годов в автомобильной промышленности, где использовались для автоматизации сборочных линий. В то время компьютеры стоили чрезвычайно дорого, поэтому контроллеры строились на жесткой логике (программировались аппаратно), что было гораздо дешевле. Однако перенастройка с одной технологической линии на другую требовала фактически изготовления нового контроллера. Поэтому появились контроллеры, алгоритм работы которых мог быть изменен несколько проще - с помощью схемы соединений реле. Такие контроллеры получили название программируемых логических контроллеров (ПЛК), и этот термин сохранился до настоящего времени. Везде ниже термины "контроллер" и "ПЛК" мы будем употреблять как синонимы.

    Немного позже появились ПЛК, которые можно было программировать на машинно-ориентированном языке, что было проще конструктивно, но требовало участия специально обученного программиста для внесения даже незначительных изменений в алгоритм управления. С этого момента началась борьба за упрощение процесса программирования ПЛК, которая привела сначала к созданию языков высокого уровня, затем - специализированных языков визуального программирования, похожих на язык релейной логики. В настоящее время этот процесс завершился созданием международного стандарта IEC (МЭК) 1131-3, который позже был переименован в МЭК 61131-3. Стандарт МЭК 61131-3 поддерживает пять языков технологического программирования, что исключает необходимость привлечения профессиональных программистов при построении систем с контроллерами, оставляя для них решение нестандартных задач.

    В связи с тем, что способ программирования является наиболее существенным классифицирующим признаком контроллера, понятие "ПЛК" все реже используется для обозначения управляющих контроллеров, которые не поддерживают технологические языки программирования.   Жесткие ограничения на стоимость и огромное разнообразие целей автоматизации привели к невозможности создания универсального ПЛК, как это случилось с офисными компьютерами. Область автоматизации выдвигает множество задач, в соответствии с которыми развивается и рынок, содержащий сотни непохожих друг на друга контроллеров, различающихся десятками параметров.

    Выбор оптимального для конкретной задачи контроллера основывается обычно на соответствии функциональных характеристик контроллера решаемой задаче при условии минимальной его стоимости. Учитываются также другие важные характеристики (температурный диапазон, надежность, бренд изготовителя, наличие разрешений Ростехнадзора, сертификатов и т. п.).

    Несмотря на огромное разнообразие контроллеров, в их развитии заметны следующие общие тенденции:
    • уменьшение габаритов;
    • расширение функциональных возможностей;
    • увеличение количества поддерживаемых интерфейсов и сетей;
    • использование идеологии "открытых систем";
    • использование языков программирования стандарта МЭК 61131-3;
    • снижение цены.
    Еще одной тенденцией является появление в контроллерах признаков компьютера (наличие мыши, клавиатуры, монитора, ОС Windows, возможности подключения жесткого диска), а в компьютерах - признаков контроллера (расширенный температурный диапазон, электронный диск, защита от пыли и влаги, крепление на DIN-рейку, наличие сторожевого таймера, увеличенное количество коммуникационных портов, использование ОС жесткого реального времени, функции самотестирования и диагностики, контроль целостности прикладной программы). Появились компьютеры в конструктивах для жестких условий эксплуатации. Аппаратные различия между компьютером и контроллером постепенно исчезают. Основными отличительными признаками контроллера остаются его назначение и наличие технологического языка программирования.

    [ http://bookasutp.ru/Chapter6_1.aspx]  
    Программируемый логический контроллер (ПЛК, PLC) – микропроцессорное устройство, предназначенное для управления технологическим процессом и другими сложными технологическими объектами.
    Принцип работы контроллера состоит в выполнение следующего цикла операций:

    1.    Сбор сигналов с датчиков;
    2.    Обработка сигналов согласно прикладному алгоритму управления;
    3.    Выдача управляющих воздействий на исполнительные устройства.

    В нормальном режиме работы контроллер непрерывно выполняет этот цикл с частотой от 50 раз в секунду. Время, затрачиваемое контроллером на выполнение полного цикла, часто называют временем (или периодом) сканирования; в большинстве современных ПЛК сканирование может настраиваться пользователем в диапазоне от 20 до 30000 миллисекунд. Для быстрых технологических процессов, где критична скорость реакции системы и требуется оперативное регулирование, время сканирования может составлять 20 мс, однако для большинства непрерывных процессов период 100 мс считается вполне приемлемым.

    Аппаратно контроллеры имеют модульную архитектуру и могут состоять из следующих компонентов:

    1.    Базовая панель ( Baseplate). Она служит для размещения на ней других модулей системы, устанавливаемых в специально отведенные позиции (слоты). Внутри базовой панели проходят две шины: одна - для подачи питания на электронные модули, другая – для пересылки данных и информационного обмена между модулями.

    2.    Модуль центрального вычислительного устройства ( СPU). Это мозг системы. Собственно в нем и происходит математическая обработка данных. Для связи с другими устройствами CPU часто оснащается сетевым интерфейсом, поддерживающим тот или иной коммуникационный стандарт.

    3.    Дополнительные коммуникационные модули. Необходимы для добавления сетевых интерфейсов, неподдерживаемых напрямую самим CPU. Коммуникационные модули существенно расширяют возможности ПЛК по сетевому взаимодействию. C их помощью к контроллеру подключают узлы распределенного ввода/вывода, интеллектуальные полевые приборы и станции операторского уровня.

    4.    Блок питания. Нужен для запитки системы от 220 V. Однако многие ПЛК не имеют стандартного блока питания и запитываются от внешнего.  
    4906
    Рис.1. Контроллер РСУ с коммуникациями Profibus и Ethernet.
     
    Иногда на базовую панель, помимо указанных выше, допускается устанавливать модули ввода/вывода полевых сигналов, которые образуют так называемый локальный ввод/вывод. Однако для большинства РСУ (DCS) характерно использование именно распределенного (удаленного) ввода/вывода.

    Отличительной особенностью контроллеров, применяемых в DCS, является возможность их резервирования. Резервирование нужно для повышения отказоустойчивости системы и заключается, как правило, в дублировании аппаратных модулей системы.
     
    4907
    Рис. 2. Резервированный контроллер с коммуникациями Profibus и Ethernet.
     
    Резервируемые модули работают параллельно и выполняют одни и те же функции. При этом один модуль находится в активном состоянии, а другой, являясь резервом, – в режиме “standby”. В случае отказа активного модуля, система автоматически переключается на резерв (это называется “горячий резерв”).

    Обратите внимание, контроллеры связаны шиной синхронизации, по которой они мониторят состояние друг друга. Это решение позволяет разнести резервированные модули на значительное расстояние друг от друга (например, расположить их в разных шкафах или даже аппаратных).

    Допустим, в данный момент активен левый контроллер, правый – находится в резерве. При этом, даже находясь в резерве, правый контроллер располагает всеми процессными данными и выполняет те же самые математические операции, что и левый. Контроллеры синхронизированы. Предположим, случается отказ левого контроллера, а именно модуля CPU. Управление автоматически передается резервному контроллеру, и теперь он становится главным. Здесь очень большое значение имеют время, которое система тратит на переключение на резерв (обычно меньше 0.5 с) и отсутствие возмущений (удара). Теперь система работает на резерве. Как только инженер заменит отказавший модуль CPU на исправный, система автоматически передаст ему управление и возвратится в исходное состояние.

    На рис. 3 изображен резервированный контроллер S7-400H производства Siemens. Данный контроллер входит в состав РСУ Simatic PCS7.
     
     
    4908
    Рис. 3. Резервированный контроллер S7-400H. Несколько другое техническое решение показано на примере резервированного контроллера FCP270 производства Foxboro (рис. 4). Данный контроллер входит в состав системы управления Foxboro IA Series.  
    4909
    Рис. 4. Резервированный контроллер FCP270.
    На базовой панели инсталлировано два процессорных модуля, работающих как резервированная пара, и коммуникационный модуль для сопряжения с оптическими сетями стандарта Ethernet. Взаимодействие между модулями происходит по внутренней шине (тоже резервированной), спрятанной непосредственно в базовую панель (ее не видно на рисунке).

    На рисунке ниже показан контроллер AC800M производства ABB (часть РСУ Extended Automation System 800xA).  
    4910
    Рис. 5. Контроллер AC800M.
     
    Это не резервированный вариант. Контроллер состоит из двух коммуникационных модулей, одного СPU и одного локального модуля ввода/вывода. Кроме этого, к контроллеру можно подключить до 64 внешних модулей ввода/вывода.

    При построении РСУ важно выбрать контроллер, удовлетворяющий всем техническим условиям и требованиям конкретного производства. Подбирая оптимальную конфигурацию, инженеры оперируют определенными техническими характеристиками промышленных контроллеров. Наиболее значимые перечислены ниже:

    1.    Возможность полного резервирования. Для задач, где отказоустойчивость критична (химия, нефтехимия, металлургия и т.д.), применение резервированных конфигураций вполне оправдано, тогда как для других менее ответственных производств резервирование зачастую оказывается избыточным решением.

    2.    Количество и тип поддерживаемых коммуникационных интерфейсов. Это определяет гибкость и масштабируемость системы управления в целом. Современные контроллеры способны поддерживать до 10 стандартов передачи данных одновременно, что во многом определяет их универсальность.

    3.    Быстродействие. Измеряется, как правило, в количестве выполняемых в секунду элементарных операций (до 200 млн.). Иногда быстродействие измеряется количеством обрабатываемых за секунду функциональных блоков (что такое функциональный блок – будет рассказано в следующей статье). Быстродействие зависит от типа центрального процессора (популярные производители - Intel, AMD, Motorola, Texas Instruments и т.д.)

    4.    Объем оперативной памяти. Во время работы контроллера в его оперативную память загружены запрограммированные пользователем алгоритмы автоматизированного управления, операционная система, библиотечные модули и т.д. Очевидно, чем больше оперативной памяти, тем сложнее и объемнее алгоритмы контроллер может выполнять, тем больше простора для творчества у программиста. Варьируется от 256 килобайт до 32 мегабайт.

    5.    Надежность. Наработка на отказ до 10-12 лет.

    6. Наличие специализированных средств разработки и поддержка различных языков программирования. Очевидно, что существование специализированный среды разработки прикладных программ – это стандарт для современного контроллера АСУ ТП. Для удобства программиста реализуется поддержка сразу нескольких языков как визуального, так и текстового (процедурного) программирования (FBD, SFC, IL, LAD, ST; об этом в следующей статье).

    7.    Возможность изменения алгоритмов управления на “лету” (online changes), т.е. без остановки работы контроллера. Для большинства контроллеров, применяемых в РСУ, поддержка online changes жизненно необходима, так как позволяет тонко настраивать систему или расширять ее функционал прямо на работающем производстве.

    8.    Возможность локального ввода/вывода. Как видно из рис. 4 контроллер Foxboro FCP270 рассчитан на работу только с удаленной подсистемой ввода/вывода, подключаемой к нему по оптическим каналам. Simatic S7-400 может спокойно работать как с локальными модулями ввода/вывода (свободные слоты на базовой панели есть), так и удаленными узлами.

    9.    Вес, габаритные размеры, вид монтажа (на DIN-рейку, на монтажную панель или в стойку 19”). Важно учитывать при проектировании и сборке системных шкафов.

    10.  Условия эксплуатации (температура, влажность, механические нагрузки). Большинство промышленных контроллеров могут работать в нечеловеческих условиях от 0 до 65 °С и при влажности до 95-98%.

    [ http://kazanets.narod.ru/PLC_PART1.htm]

    Тематики

    Синонимы

    EN

    DE

    • speicherprogrammierbare Steuerung, f

    FR

    Франко-русский словарь нормативно-технической терминологии > automate programmable à mémoire

  • 16 speicherprogrammierbare Steuerung, f

    1. программируемый логический контроллер

     

    программируемый логический контроллер
    ПЛК
    -
    [Интент]

    контроллер
    Управляющее устройство, осуществляющее автоматическое управление посредством программной реализации алгоритмов управления.
    [Сборник рекомендуемых терминов. Выпуск 107. Теория управления.
     Академия наук СССР. Комитет научно-технической терминологии. 1984 г.]

    EN

    storage-programmable logic controller
    computer-aided control equipment or system whose logic sequence can be varied via a directly or remote-control connected programming device, for example a control panel, a host computer or a portable terminal
    [IEV ref 351-32-34]

    FR

    automate programmable à mémoire
    équipement ou système de commande assisté par ordinateur dont la séquence logique peut être modifiée directement ou par l'intermédiaire d'un dispositif de programmation relié à une télécommande, par exemple un panneau de commande, un ordinateur hôte ou un terminal de données portatif
    [IEV ref 351-32-34]

      См. также:
    - архитектура контроллера;
    - производительность контроллера;
    - время реакции контроллера;
    КЛАССИФИКАЦИЯ

      Основным показателем ПЛК является количество каналов ввода-вывода. По этому признаку ПЛК делятся на следующие группы: По расположению модулей ввода-вывода ПЛК бывают:
    • моноблочными - в которых устройство ввода-вывода не может быть удалено из контроллера или заменено на другое. Конструктивно контроллер представляет собой единое целое с устройствами ввода-вывода (например, одноплатный контроллер). Моноблочный контроллер может иметь, например, 16 каналов дискретного ввода и 8 каналов релейного вывода;
    • модульные - состоящие из общей корзины (шасси), в которой располагаются модуль центрального процессора и сменные модули ввода-вывода. Состав модулей выбирается пользователем в зависимости от решаемой задачи. Типовое количество слотов для сменных модулей - от 8 до 32;
    • распределенные (с удаленными модулями ввода-вывода) - в которых модули ввода-вывода выполнены в отдельных корпусах, соединяются с модулем контроллера по сети (обычно на основе интерфейса RS-485) и могут быть расположены на расстоянии до 1,2 км от процессорного модуля.
    Часто перечисленные конструктивные типы контроллеров комбинируются, например, моноблочный контроллер может иметь несколько съемных плат; моноблочный и модульный контроллеры могут быть дополнены удаленными модулями ввода-вывода, чтобы увеличить общее количество каналов.

    Многие контроллеры имеют набор сменных процессорных плат разной производительности. Это позволяет расширить круг потенциальных пользователей системы без изменения ее конструктива.

    По конструктивному исполнению и способу крепления контроллеры делятся на:
    По области применения контроллеры делятся на следующие типы:
    • универсальные общепромышленные;
    • для управления роботами;
    • для управления позиционированием и перемещением;
    • коммуникационные;
    • ПИД-контроллеры;
    • специализированные.

    По способу программирования контроллеры бывают:
    • программируемые с лицевой панели контроллера;
    • программируемые переносным программатором;
    • программируемые с помощью дисплея, мыши и клавиатуры;
    • программируемые с помощью персонального компьютера.

    Контроллеры могут программироваться на следующих языках:
    • на классических алгоритмических языках (C, С#, Visual Basic);
    • на языках МЭК 61131-3.

    Контроллеры могут содержать в своем составе модули ввода-вывода или не содержать их. Примерами контроллеров без модулей ввода-вывода являются коммуникационные контроллеры, которые выполняют функцию межсетевого шлюза, или контроллеры, получающие данные от контроллеров нижнего уровня иерархии АСУ ТП.   Контроллеры для систем автоматизации

    Слово "контроллер" произошло от английского "control" (управление), а не от русского "контроль" (учет, проверка). Контроллером в системах автоматизации называют устройство, выполняющее управление физическими процессами по записанному в него алгоритму, с использованием информации, получаемой от датчиков и выводимой в исполнительные устройства.

    Первые контроллеры появились на рубеже 60-х и 70-х годов в автомобильной промышленности, где использовались для автоматизации сборочных линий. В то время компьютеры стоили чрезвычайно дорого, поэтому контроллеры строились на жесткой логике (программировались аппаратно), что было гораздо дешевле. Однако перенастройка с одной технологической линии на другую требовала фактически изготовления нового контроллера. Поэтому появились контроллеры, алгоритм работы которых мог быть изменен несколько проще - с помощью схемы соединений реле. Такие контроллеры получили название программируемых логических контроллеров (ПЛК), и этот термин сохранился до настоящего времени. Везде ниже термины "контроллер" и "ПЛК" мы будем употреблять как синонимы.

    Немного позже появились ПЛК, которые можно было программировать на машинно-ориентированном языке, что было проще конструктивно, но требовало участия специально обученного программиста для внесения даже незначительных изменений в алгоритм управления. С этого момента началась борьба за упрощение процесса программирования ПЛК, которая привела сначала к созданию языков высокого уровня, затем - специализированных языков визуального программирования, похожих на язык релейной логики. В настоящее время этот процесс завершился созданием международного стандарта IEC (МЭК) 1131-3, который позже был переименован в МЭК 61131-3. Стандарт МЭК 61131-3 поддерживает пять языков технологического программирования, что исключает необходимость привлечения профессиональных программистов при построении систем с контроллерами, оставляя для них решение нестандартных задач.

    В связи с тем, что способ программирования является наиболее существенным классифицирующим признаком контроллера, понятие "ПЛК" все реже используется для обозначения управляющих контроллеров, которые не поддерживают технологические языки программирования.   Жесткие ограничения на стоимость и огромное разнообразие целей автоматизации привели к невозможности создания универсального ПЛК, как это случилось с офисными компьютерами. Область автоматизации выдвигает множество задач, в соответствии с которыми развивается и рынок, содержащий сотни непохожих друг на друга контроллеров, различающихся десятками параметров.

    Выбор оптимального для конкретной задачи контроллера основывается обычно на соответствии функциональных характеристик контроллера решаемой задаче при условии минимальной его стоимости. Учитываются также другие важные характеристики (температурный диапазон, надежность, бренд изготовителя, наличие разрешений Ростехнадзора, сертификатов и т. п.).

    Несмотря на огромное разнообразие контроллеров, в их развитии заметны следующие общие тенденции:
    • уменьшение габаритов;
    • расширение функциональных возможностей;
    • увеличение количества поддерживаемых интерфейсов и сетей;
    • использование идеологии "открытых систем";
    • использование языков программирования стандарта МЭК 61131-3;
    • снижение цены.
    Еще одной тенденцией является появление в контроллерах признаков компьютера (наличие мыши, клавиатуры, монитора, ОС Windows, возможности подключения жесткого диска), а в компьютерах - признаков контроллера (расширенный температурный диапазон, электронный диск, защита от пыли и влаги, крепление на DIN-рейку, наличие сторожевого таймера, увеличенное количество коммуникационных портов, использование ОС жесткого реального времени, функции самотестирования и диагностики, контроль целостности прикладной программы). Появились компьютеры в конструктивах для жестких условий эксплуатации. Аппаратные различия между компьютером и контроллером постепенно исчезают. Основными отличительными признаками контроллера остаются его назначение и наличие технологического языка программирования.

    [ http://bookasutp.ru/Chapter6_1.aspx]  
    Программируемый логический контроллер (ПЛК, PLC) – микропроцессорное устройство, предназначенное для управления технологическим процессом и другими сложными технологическими объектами.
    Принцип работы контроллера состоит в выполнение следующего цикла операций:

    1.    Сбор сигналов с датчиков;
    2.    Обработка сигналов согласно прикладному алгоритму управления;
    3.    Выдача управляющих воздействий на исполнительные устройства.

    В нормальном режиме работы контроллер непрерывно выполняет этот цикл с частотой от 50 раз в секунду. Время, затрачиваемое контроллером на выполнение полного цикла, часто называют временем (или периодом) сканирования; в большинстве современных ПЛК сканирование может настраиваться пользователем в диапазоне от 20 до 30000 миллисекунд. Для быстрых технологических процессов, где критична скорость реакции системы и требуется оперативное регулирование, время сканирования может составлять 20 мс, однако для большинства непрерывных процессов период 100 мс считается вполне приемлемым.

    Аппаратно контроллеры имеют модульную архитектуру и могут состоять из следующих компонентов:

    1.    Базовая панель ( Baseplate). Она служит для размещения на ней других модулей системы, устанавливаемых в специально отведенные позиции (слоты). Внутри базовой панели проходят две шины: одна - для подачи питания на электронные модули, другая – для пересылки данных и информационного обмена между модулями.

    2.    Модуль центрального вычислительного устройства ( СPU). Это мозг системы. Собственно в нем и происходит математическая обработка данных. Для связи с другими устройствами CPU часто оснащается сетевым интерфейсом, поддерживающим тот или иной коммуникационный стандарт.

    3.    Дополнительные коммуникационные модули. Необходимы для добавления сетевых интерфейсов, неподдерживаемых напрямую самим CPU. Коммуникационные модули существенно расширяют возможности ПЛК по сетевому взаимодействию. C их помощью к контроллеру подключают узлы распределенного ввода/вывода, интеллектуальные полевые приборы и станции операторского уровня.

    4.    Блок питания. Нужен для запитки системы от 220 V. Однако многие ПЛК не имеют стандартного блока питания и запитываются от внешнего.  
    4906
    Рис.1. Контроллер РСУ с коммуникациями Profibus и Ethernet.
     
    Иногда на базовую панель, помимо указанных выше, допускается устанавливать модули ввода/вывода полевых сигналов, которые образуют так называемый локальный ввод/вывод. Однако для большинства РСУ (DCS) характерно использование именно распределенного (удаленного) ввода/вывода.

    Отличительной особенностью контроллеров, применяемых в DCS, является возможность их резервирования. Резервирование нужно для повышения отказоустойчивости системы и заключается, как правило, в дублировании аппаратных модулей системы.
     
    4907
    Рис. 2. Резервированный контроллер с коммуникациями Profibus и Ethernet.
     
    Резервируемые модули работают параллельно и выполняют одни и те же функции. При этом один модуль находится в активном состоянии, а другой, являясь резервом, – в режиме “standby”. В случае отказа активного модуля, система автоматически переключается на резерв (это называется “горячий резерв”).

    Обратите внимание, контроллеры связаны шиной синхронизации, по которой они мониторят состояние друг друга. Это решение позволяет разнести резервированные модули на значительное расстояние друг от друга (например, расположить их в разных шкафах или даже аппаратных).

    Допустим, в данный момент активен левый контроллер, правый – находится в резерве. При этом, даже находясь в резерве, правый контроллер располагает всеми процессными данными и выполняет те же самые математические операции, что и левый. Контроллеры синхронизированы. Предположим, случается отказ левого контроллера, а именно модуля CPU. Управление автоматически передается резервному контроллеру, и теперь он становится главным. Здесь очень большое значение имеют время, которое система тратит на переключение на резерв (обычно меньше 0.5 с) и отсутствие возмущений (удара). Теперь система работает на резерве. Как только инженер заменит отказавший модуль CPU на исправный, система автоматически передаст ему управление и возвратится в исходное состояние.

    На рис. 3 изображен резервированный контроллер S7-400H производства Siemens. Данный контроллер входит в состав РСУ Simatic PCS7.
     
     
    4908
    Рис. 3. Резервированный контроллер S7-400H. Несколько другое техническое решение показано на примере резервированного контроллера FCP270 производства Foxboro (рис. 4). Данный контроллер входит в состав системы управления Foxboro IA Series.  
    4909
    Рис. 4. Резервированный контроллер FCP270.
    На базовой панели инсталлировано два процессорных модуля, работающих как резервированная пара, и коммуникационный модуль для сопряжения с оптическими сетями стандарта Ethernet. Взаимодействие между модулями происходит по внутренней шине (тоже резервированной), спрятанной непосредственно в базовую панель (ее не видно на рисунке).

    На рисунке ниже показан контроллер AC800M производства ABB (часть РСУ Extended Automation System 800xA).  
    4910
    Рис. 5. Контроллер AC800M.
     
    Это не резервированный вариант. Контроллер состоит из двух коммуникационных модулей, одного СPU и одного локального модуля ввода/вывода. Кроме этого, к контроллеру можно подключить до 64 внешних модулей ввода/вывода.

    При построении РСУ важно выбрать контроллер, удовлетворяющий всем техническим условиям и требованиям конкретного производства. Подбирая оптимальную конфигурацию, инженеры оперируют определенными техническими характеристиками промышленных контроллеров. Наиболее значимые перечислены ниже:

    1.    Возможность полного резервирования. Для задач, где отказоустойчивость критична (химия, нефтехимия, металлургия и т.д.), применение резервированных конфигураций вполне оправдано, тогда как для других менее ответственных производств резервирование зачастую оказывается избыточным решением.

    2.    Количество и тип поддерживаемых коммуникационных интерфейсов. Это определяет гибкость и масштабируемость системы управления в целом. Современные контроллеры способны поддерживать до 10 стандартов передачи данных одновременно, что во многом определяет их универсальность.

    3.    Быстродействие. Измеряется, как правило, в количестве выполняемых в секунду элементарных операций (до 200 млн.). Иногда быстродействие измеряется количеством обрабатываемых за секунду функциональных блоков (что такое функциональный блок – будет рассказано в следующей статье). Быстродействие зависит от типа центрального процессора (популярные производители - Intel, AMD, Motorola, Texas Instruments и т.д.)

    4.    Объем оперативной памяти. Во время работы контроллера в его оперативную память загружены запрограммированные пользователем алгоритмы автоматизированного управления, операционная система, библиотечные модули и т.д. Очевидно, чем больше оперативной памяти, тем сложнее и объемнее алгоритмы контроллер может выполнять, тем больше простора для творчества у программиста. Варьируется от 256 килобайт до 32 мегабайт.

    5.    Надежность. Наработка на отказ до 10-12 лет.

    6. Наличие специализированных средств разработки и поддержка различных языков программирования. Очевидно, что существование специализированный среды разработки прикладных программ – это стандарт для современного контроллера АСУ ТП. Для удобства программиста реализуется поддержка сразу нескольких языков как визуального, так и текстового (процедурного) программирования (FBD, SFC, IL, LAD, ST; об этом в следующей статье).

    7.    Возможность изменения алгоритмов управления на “лету” (online changes), т.е. без остановки работы контроллера. Для большинства контроллеров, применяемых в РСУ, поддержка online changes жизненно необходима, так как позволяет тонко настраивать систему или расширять ее функционал прямо на работающем производстве.

    8.    Возможность локального ввода/вывода. Как видно из рис. 4 контроллер Foxboro FCP270 рассчитан на работу только с удаленной подсистемой ввода/вывода, подключаемой к нему по оптическим каналам. Simatic S7-400 может спокойно работать как с локальными модулями ввода/вывода (свободные слоты на базовой панели есть), так и удаленными узлами.

    9.    Вес, габаритные размеры, вид монтажа (на DIN-рейку, на монтажную панель или в стойку 19”). Важно учитывать при проектировании и сборке системных шкафов.

    10.  Условия эксплуатации (температура, влажность, механические нагрузки). Большинство промышленных контроллеров могут работать в нечеловеческих условиях от 0 до 65 °С и при влажности до 95-98%.

    [ http://kazanets.narod.ru/PLC_PART1.htm]

    Тематики

    Синонимы

    EN

    DE

    • speicherprogrammierbare Steuerung, f

    FR

    Немецко-русский словарь нормативно-технической терминологии > speicherprogrammierbare Steuerung, f

  • 17 программируемый логический контроллер

    1. storage-programmable logic controller
    2. Programmable Logic Controller
    3. programmable controller
    4. PLC

     

    программируемый логический контроллер
    ПЛК
    -
    [Интент]

    контроллер
    Управляющее устройство, осуществляющее автоматическое управление посредством программной реализации алгоритмов управления.
    [Сборник рекомендуемых терминов. Выпуск 107. Теория управления.
     Академия наук СССР. Комитет научно-технической терминологии. 1984 г.]

    EN

    storage-programmable logic controller
    computer-aided control equipment or system whose logic sequence can be varied via a directly or remote-control connected programming device, for example a control panel, a host computer or a portable terminal
    [IEV ref 351-32-34]

    FR

    automate programmable à mémoire
    équipement ou système de commande assisté par ordinateur dont la séquence logique peut être modifiée directement ou par l'intermédiaire d'un dispositif de programmation relié à une télécommande, par exemple un panneau de commande, un ordinateur hôte ou un terminal de données portatif
    [IEV ref 351-32-34]

      См. также:
    - архитектура контроллера;
    - производительность контроллера;
    - время реакции контроллера;
    КЛАССИФИКАЦИЯ

      Основным показателем ПЛК является количество каналов ввода-вывода. По этому признаку ПЛК делятся на следующие группы: По расположению модулей ввода-вывода ПЛК бывают:
    • моноблочными - в которых устройство ввода-вывода не может быть удалено из контроллера или заменено на другое. Конструктивно контроллер представляет собой единое целое с устройствами ввода-вывода (например, одноплатный контроллер). Моноблочный контроллер может иметь, например, 16 каналов дискретного ввода и 8 каналов релейного вывода;
    • модульные - состоящие из общей корзины (шасси), в которой располагаются модуль центрального процессора и сменные модули ввода-вывода. Состав модулей выбирается пользователем в зависимости от решаемой задачи. Типовое количество слотов для сменных модулей - от 8 до 32;
    • распределенные (с удаленными модулями ввода-вывода) - в которых модули ввода-вывода выполнены в отдельных корпусах, соединяются с модулем контроллера по сети (обычно на основе интерфейса RS-485) и могут быть расположены на расстоянии до 1,2 км от процессорного модуля.
    Часто перечисленные конструктивные типы контроллеров комбинируются, например, моноблочный контроллер может иметь несколько съемных плат; моноблочный и модульный контроллеры могут быть дополнены удаленными модулями ввода-вывода, чтобы увеличить общее количество каналов.

    Многие контроллеры имеют набор сменных процессорных плат разной производительности. Это позволяет расширить круг потенциальных пользователей системы без изменения ее конструктива.

    По конструктивному исполнению и способу крепления контроллеры делятся на:
    По области применения контроллеры делятся на следующие типы:
    • универсальные общепромышленные;
    • для управления роботами;
    • для управления позиционированием и перемещением;
    • коммуникационные;
    • ПИД-контроллеры;
    • специализированные.

    По способу программирования контроллеры бывают:
    • программируемые с лицевой панели контроллера;
    • программируемые переносным программатором;
    • программируемые с помощью дисплея, мыши и клавиатуры;
    • программируемые с помощью персонального компьютера.

    Контроллеры могут программироваться на следующих языках:
    • на классических алгоритмических языках (C, С#, Visual Basic);
    • на языках МЭК 61131-3.

    Контроллеры могут содержать в своем составе модули ввода-вывода или не содержать их. Примерами контроллеров без модулей ввода-вывода являются коммуникационные контроллеры, которые выполняют функцию межсетевого шлюза, или контроллеры, получающие данные от контроллеров нижнего уровня иерархии АСУ ТП.   Контроллеры для систем автоматизации

    Слово "контроллер" произошло от английского "control" (управление), а не от русского "контроль" (учет, проверка). Контроллером в системах автоматизации называют устройство, выполняющее управление физическими процессами по записанному в него алгоритму, с использованием информации, получаемой от датчиков и выводимой в исполнительные устройства.

    Первые контроллеры появились на рубеже 60-х и 70-х годов в автомобильной промышленности, где использовались для автоматизации сборочных линий. В то время компьютеры стоили чрезвычайно дорого, поэтому контроллеры строились на жесткой логике (программировались аппаратно), что было гораздо дешевле. Однако перенастройка с одной технологической линии на другую требовала фактически изготовления нового контроллера. Поэтому появились контроллеры, алгоритм работы которых мог быть изменен несколько проще - с помощью схемы соединений реле. Такие контроллеры получили название программируемых логических контроллеров (ПЛК), и этот термин сохранился до настоящего времени. Везде ниже термины "контроллер" и "ПЛК" мы будем употреблять как синонимы.

    Немного позже появились ПЛК, которые можно было программировать на машинно-ориентированном языке, что было проще конструктивно, но требовало участия специально обученного программиста для внесения даже незначительных изменений в алгоритм управления. С этого момента началась борьба за упрощение процесса программирования ПЛК, которая привела сначала к созданию языков высокого уровня, затем - специализированных языков визуального программирования, похожих на язык релейной логики. В настоящее время этот процесс завершился созданием международного стандарта IEC (МЭК) 1131-3, который позже был переименован в МЭК 61131-3. Стандарт МЭК 61131-3 поддерживает пять языков технологического программирования, что исключает необходимость привлечения профессиональных программистов при построении систем с контроллерами, оставляя для них решение нестандартных задач.

    В связи с тем, что способ программирования является наиболее существенным классифицирующим признаком контроллера, понятие "ПЛК" все реже используется для обозначения управляющих контроллеров, которые не поддерживают технологические языки программирования.   Жесткие ограничения на стоимость и огромное разнообразие целей автоматизации привели к невозможности создания универсального ПЛК, как это случилось с офисными компьютерами. Область автоматизации выдвигает множество задач, в соответствии с которыми развивается и рынок, содержащий сотни непохожих друг на друга контроллеров, различающихся десятками параметров.

    Выбор оптимального для конкретной задачи контроллера основывается обычно на соответствии функциональных характеристик контроллера решаемой задаче при условии минимальной его стоимости. Учитываются также другие важные характеристики (температурный диапазон, надежность, бренд изготовителя, наличие разрешений Ростехнадзора, сертификатов и т. п.).

    Несмотря на огромное разнообразие контроллеров, в их развитии заметны следующие общие тенденции:
    • уменьшение габаритов;
    • расширение функциональных возможностей;
    • увеличение количества поддерживаемых интерфейсов и сетей;
    • использование идеологии "открытых систем";
    • использование языков программирования стандарта МЭК 61131-3;
    • снижение цены.
    Еще одной тенденцией является появление в контроллерах признаков компьютера (наличие мыши, клавиатуры, монитора, ОС Windows, возможности подключения жесткого диска), а в компьютерах - признаков контроллера (расширенный температурный диапазон, электронный диск, защита от пыли и влаги, крепление на DIN-рейку, наличие сторожевого таймера, увеличенное количество коммуникационных портов, использование ОС жесткого реального времени, функции самотестирования и диагностики, контроль целостности прикладной программы). Появились компьютеры в конструктивах для жестких условий эксплуатации. Аппаратные различия между компьютером и контроллером постепенно исчезают. Основными отличительными признаками контроллера остаются его назначение и наличие технологического языка программирования.

    [ http://bookasutp.ru/Chapter6_1.aspx]  
    Программируемый логический контроллер (ПЛК, PLC) – микропроцессорное устройство, предназначенное для управления технологическим процессом и другими сложными технологическими объектами.
    Принцип работы контроллера состоит в выполнение следующего цикла операций:

    1.    Сбор сигналов с датчиков;
    2.    Обработка сигналов согласно прикладному алгоритму управления;
    3.    Выдача управляющих воздействий на исполнительные устройства.

    В нормальном режиме работы контроллер непрерывно выполняет этот цикл с частотой от 50 раз в секунду. Время, затрачиваемое контроллером на выполнение полного цикла, часто называют временем (или периодом) сканирования; в большинстве современных ПЛК сканирование может настраиваться пользователем в диапазоне от 20 до 30000 миллисекунд. Для быстрых технологических процессов, где критична скорость реакции системы и требуется оперативное регулирование, время сканирования может составлять 20 мс, однако для большинства непрерывных процессов период 100 мс считается вполне приемлемым.

    Аппаратно контроллеры имеют модульную архитектуру и могут состоять из следующих компонентов:

    1.    Базовая панель ( Baseplate). Она служит для размещения на ней других модулей системы, устанавливаемых в специально отведенные позиции (слоты). Внутри базовой панели проходят две шины: одна - для подачи питания на электронные модули, другая – для пересылки данных и информационного обмена между модулями.

    2.    Модуль центрального вычислительного устройства ( СPU). Это мозг системы. Собственно в нем и происходит математическая обработка данных. Для связи с другими устройствами CPU часто оснащается сетевым интерфейсом, поддерживающим тот или иной коммуникационный стандарт.

    3.    Дополнительные коммуникационные модули. Необходимы для добавления сетевых интерфейсов, неподдерживаемых напрямую самим CPU. Коммуникационные модули существенно расширяют возможности ПЛК по сетевому взаимодействию. C их помощью к контроллеру подключают узлы распределенного ввода/вывода, интеллектуальные полевые приборы и станции операторского уровня.

    4.    Блок питания. Нужен для запитки системы от 220 V. Однако многие ПЛК не имеют стандартного блока питания и запитываются от внешнего.  
    4906
    Рис.1. Контроллер РСУ с коммуникациями Profibus и Ethernet.
     
    Иногда на базовую панель, помимо указанных выше, допускается устанавливать модули ввода/вывода полевых сигналов, которые образуют так называемый локальный ввод/вывод. Однако для большинства РСУ (DCS) характерно использование именно распределенного (удаленного) ввода/вывода.

    Отличительной особенностью контроллеров, применяемых в DCS, является возможность их резервирования. Резервирование нужно для повышения отказоустойчивости системы и заключается, как правило, в дублировании аппаратных модулей системы.
     
    4907
    Рис. 2. Резервированный контроллер с коммуникациями Profibus и Ethernet.
     
    Резервируемые модули работают параллельно и выполняют одни и те же функции. При этом один модуль находится в активном состоянии, а другой, являясь резервом, – в режиме “standby”. В случае отказа активного модуля, система автоматически переключается на резерв (это называется “горячий резерв”).

    Обратите внимание, контроллеры связаны шиной синхронизации, по которой они мониторят состояние друг друга. Это решение позволяет разнести резервированные модули на значительное расстояние друг от друга (например, расположить их в разных шкафах или даже аппаратных).

    Допустим, в данный момент активен левый контроллер, правый – находится в резерве. При этом, даже находясь в резерве, правый контроллер располагает всеми процессными данными и выполняет те же самые математические операции, что и левый. Контроллеры синхронизированы. Предположим, случается отказ левого контроллера, а именно модуля CPU. Управление автоматически передается резервному контроллеру, и теперь он становится главным. Здесь очень большое значение имеют время, которое система тратит на переключение на резерв (обычно меньше 0.5 с) и отсутствие возмущений (удара). Теперь система работает на резерве. Как только инженер заменит отказавший модуль CPU на исправный, система автоматически передаст ему управление и возвратится в исходное состояние.

    На рис. 3 изображен резервированный контроллер S7-400H производства Siemens. Данный контроллер входит в состав РСУ Simatic PCS7.
     
     
    4908
    Рис. 3. Резервированный контроллер S7-400H. Несколько другое техническое решение показано на примере резервированного контроллера FCP270 производства Foxboro (рис. 4). Данный контроллер входит в состав системы управления Foxboro IA Series.  
    4909
    Рис. 4. Резервированный контроллер FCP270.
    На базовой панели инсталлировано два процессорных модуля, работающих как резервированная пара, и коммуникационный модуль для сопряжения с оптическими сетями стандарта Ethernet. Взаимодействие между модулями происходит по внутренней шине (тоже резервированной), спрятанной непосредственно в базовую панель (ее не видно на рисунке).

    На рисунке ниже показан контроллер AC800M производства ABB (часть РСУ Extended Automation System 800xA).  
    4910
    Рис. 5. Контроллер AC800M.
     
    Это не резервированный вариант. Контроллер состоит из двух коммуникационных модулей, одного СPU и одного локального модуля ввода/вывода. Кроме этого, к контроллеру можно подключить до 64 внешних модулей ввода/вывода.

    При построении РСУ важно выбрать контроллер, удовлетворяющий всем техническим условиям и требованиям конкретного производства. Подбирая оптимальную конфигурацию, инженеры оперируют определенными техническими характеристиками промышленных контроллеров. Наиболее значимые перечислены ниже:

    1.    Возможность полного резервирования. Для задач, где отказоустойчивость критична (химия, нефтехимия, металлургия и т.д.), применение резервированных конфигураций вполне оправдано, тогда как для других менее ответственных производств резервирование зачастую оказывается избыточным решением.

    2.    Количество и тип поддерживаемых коммуникационных интерфейсов. Это определяет гибкость и масштабируемость системы управления в целом. Современные контроллеры способны поддерживать до 10 стандартов передачи данных одновременно, что во многом определяет их универсальность.

    3.    Быстродействие. Измеряется, как правило, в количестве выполняемых в секунду элементарных операций (до 200 млн.). Иногда быстродействие измеряется количеством обрабатываемых за секунду функциональных блоков (что такое функциональный блок – будет рассказано в следующей статье). Быстродействие зависит от типа центрального процессора (популярные производители - Intel, AMD, Motorola, Texas Instruments и т.д.)

    4.    Объем оперативной памяти. Во время работы контроллера в его оперативную память загружены запрограммированные пользователем алгоритмы автоматизированного управления, операционная система, библиотечные модули и т.д. Очевидно, чем больше оперативной памяти, тем сложнее и объемнее алгоритмы контроллер может выполнять, тем больше простора для творчества у программиста. Варьируется от 256 килобайт до 32 мегабайт.

    5.    Надежность. Наработка на отказ до 10-12 лет.

    6. Наличие специализированных средств разработки и поддержка различных языков программирования. Очевидно, что существование специализированный среды разработки прикладных программ – это стандарт для современного контроллера АСУ ТП. Для удобства программиста реализуется поддержка сразу нескольких языков как визуального, так и текстового (процедурного) программирования (FBD, SFC, IL, LAD, ST; об этом в следующей статье).

    7.    Возможность изменения алгоритмов управления на “лету” (online changes), т.е. без остановки работы контроллера. Для большинства контроллеров, применяемых в РСУ, поддержка online changes жизненно необходима, так как позволяет тонко настраивать систему или расширять ее функционал прямо на работающем производстве.

    8.    Возможность локального ввода/вывода. Как видно из рис. 4 контроллер Foxboro FCP270 рассчитан на работу только с удаленной подсистемой ввода/вывода, подключаемой к нему по оптическим каналам. Simatic S7-400 может спокойно работать как с локальными модулями ввода/вывода (свободные слоты на базовой панели есть), так и удаленными узлами.

    9.    Вес, габаритные размеры, вид монтажа (на DIN-рейку, на монтажную панель или в стойку 19”). Важно учитывать при проектировании и сборке системных шкафов.

    10.  Условия эксплуатации (температура, влажность, механические нагрузки). Большинство промышленных контроллеров могут работать в нечеловеческих условиях от 0 до 65 °С и при влажности до 95-98%.

    [ http://kazanets.narod.ru/PLC_PART1.htm]

    Тематики

    Синонимы

    EN

    DE

    • speicherprogrammierbare Steuerung, f

    FR

    Русско-английский словарь нормативно-технической терминологии > программируемый логический контроллер

  • 18 программируемый логический контроллер

    1. automate programmable à mémoire

     

    программируемый логический контроллер
    ПЛК
    -
    [Интент]

    контроллер
    Управляющее устройство, осуществляющее автоматическое управление посредством программной реализации алгоритмов управления.
    [Сборник рекомендуемых терминов. Выпуск 107. Теория управления.
     Академия наук СССР. Комитет научно-технической терминологии. 1984 г.]

    EN

    storage-programmable logic controller
    computer-aided control equipment or system whose logic sequence can be varied via a directly or remote-control connected programming device, for example a control panel, a host computer or a portable terminal
    [IEV ref 351-32-34]

    FR

    automate programmable à mémoire
    équipement ou système de commande assisté par ordinateur dont la séquence logique peut être modifiée directement ou par l'intermédiaire d'un dispositif de programmation relié à une télécommande, par exemple un panneau de commande, un ordinateur hôte ou un terminal de données portatif
    [IEV ref 351-32-34]

      См. также:
    - архитектура контроллера;
    - производительность контроллера;
    - время реакции контроллера;
    КЛАССИФИКАЦИЯ

      Основным показателем ПЛК является количество каналов ввода-вывода. По этому признаку ПЛК делятся на следующие группы: По расположению модулей ввода-вывода ПЛК бывают:
    • моноблочными - в которых устройство ввода-вывода не может быть удалено из контроллера или заменено на другое. Конструктивно контроллер представляет собой единое целое с устройствами ввода-вывода (например, одноплатный контроллер). Моноблочный контроллер может иметь, например, 16 каналов дискретного ввода и 8 каналов релейного вывода;
    • модульные - состоящие из общей корзины (шасси), в которой располагаются модуль центрального процессора и сменные модули ввода-вывода. Состав модулей выбирается пользователем в зависимости от решаемой задачи. Типовое количество слотов для сменных модулей - от 8 до 32;
    • распределенные (с удаленными модулями ввода-вывода) - в которых модули ввода-вывода выполнены в отдельных корпусах, соединяются с модулем контроллера по сети (обычно на основе интерфейса RS-485) и могут быть расположены на расстоянии до 1,2 км от процессорного модуля.
    Часто перечисленные конструктивные типы контроллеров комбинируются, например, моноблочный контроллер может иметь несколько съемных плат; моноблочный и модульный контроллеры могут быть дополнены удаленными модулями ввода-вывода, чтобы увеличить общее количество каналов.

    Многие контроллеры имеют набор сменных процессорных плат разной производительности. Это позволяет расширить круг потенциальных пользователей системы без изменения ее конструктива.

    По конструктивному исполнению и способу крепления контроллеры делятся на:
    По области применения контроллеры делятся на следующие типы:
    • универсальные общепромышленные;
    • для управления роботами;
    • для управления позиционированием и перемещением;
    • коммуникационные;
    • ПИД-контроллеры;
    • специализированные.

    По способу программирования контроллеры бывают:
    • программируемые с лицевой панели контроллера;
    • программируемые переносным программатором;
    • программируемые с помощью дисплея, мыши и клавиатуры;
    • программируемые с помощью персонального компьютера.

    Контроллеры могут программироваться на следующих языках:
    • на классических алгоритмических языках (C, С#, Visual Basic);
    • на языках МЭК 61131-3.

    Контроллеры могут содержать в своем составе модули ввода-вывода или не содержать их. Примерами контроллеров без модулей ввода-вывода являются коммуникационные контроллеры, которые выполняют функцию межсетевого шлюза, или контроллеры, получающие данные от контроллеров нижнего уровня иерархии АСУ ТП.   Контроллеры для систем автоматизации

    Слово "контроллер" произошло от английского "control" (управление), а не от русского "контроль" (учет, проверка). Контроллером в системах автоматизации называют устройство, выполняющее управление физическими процессами по записанному в него алгоритму, с использованием информации, получаемой от датчиков и выводимой в исполнительные устройства.

    Первые контроллеры появились на рубеже 60-х и 70-х годов в автомобильной промышленности, где использовались для автоматизации сборочных линий. В то время компьютеры стоили чрезвычайно дорого, поэтому контроллеры строились на жесткой логике (программировались аппаратно), что было гораздо дешевле. Однако перенастройка с одной технологической линии на другую требовала фактически изготовления нового контроллера. Поэтому появились контроллеры, алгоритм работы которых мог быть изменен несколько проще - с помощью схемы соединений реле. Такие контроллеры получили название программируемых логических контроллеров (ПЛК), и этот термин сохранился до настоящего времени. Везде ниже термины "контроллер" и "ПЛК" мы будем употреблять как синонимы.

    Немного позже появились ПЛК, которые можно было программировать на машинно-ориентированном языке, что было проще конструктивно, но требовало участия специально обученного программиста для внесения даже незначительных изменений в алгоритм управления. С этого момента началась борьба за упрощение процесса программирования ПЛК, которая привела сначала к созданию языков высокого уровня, затем - специализированных языков визуального программирования, похожих на язык релейной логики. В настоящее время этот процесс завершился созданием международного стандарта IEC (МЭК) 1131-3, который позже был переименован в МЭК 61131-3. Стандарт МЭК 61131-3 поддерживает пять языков технологического программирования, что исключает необходимость привлечения профессиональных программистов при построении систем с контроллерами, оставляя для них решение нестандартных задач.

    В связи с тем, что способ программирования является наиболее существенным классифицирующим признаком контроллера, понятие "ПЛК" все реже используется для обозначения управляющих контроллеров, которые не поддерживают технологические языки программирования.   Жесткие ограничения на стоимость и огромное разнообразие целей автоматизации привели к невозможности создания универсального ПЛК, как это случилось с офисными компьютерами. Область автоматизации выдвигает множество задач, в соответствии с которыми развивается и рынок, содержащий сотни непохожих друг на друга контроллеров, различающихся десятками параметров.

    Выбор оптимального для конкретной задачи контроллера основывается обычно на соответствии функциональных характеристик контроллера решаемой задаче при условии минимальной его стоимости. Учитываются также другие важные характеристики (температурный диапазон, надежность, бренд изготовителя, наличие разрешений Ростехнадзора, сертификатов и т. п.).

    Несмотря на огромное разнообразие контроллеров, в их развитии заметны следующие общие тенденции:
    • уменьшение габаритов;
    • расширение функциональных возможностей;
    • увеличение количества поддерживаемых интерфейсов и сетей;
    • использование идеологии "открытых систем";
    • использование языков программирования стандарта МЭК 61131-3;
    • снижение цены.
    Еще одной тенденцией является появление в контроллерах признаков компьютера (наличие мыши, клавиатуры, монитора, ОС Windows, возможности подключения жесткого диска), а в компьютерах - признаков контроллера (расширенный температурный диапазон, электронный диск, защита от пыли и влаги, крепление на DIN-рейку, наличие сторожевого таймера, увеличенное количество коммуникационных портов, использование ОС жесткого реального времени, функции самотестирования и диагностики, контроль целостности прикладной программы). Появились компьютеры в конструктивах для жестких условий эксплуатации. Аппаратные различия между компьютером и контроллером постепенно исчезают. Основными отличительными признаками контроллера остаются его назначение и наличие технологического языка программирования.

    [ http://bookasutp.ru/Chapter6_1.aspx]  
    Программируемый логический контроллер (ПЛК, PLC) – микропроцессорное устройство, предназначенное для управления технологическим процессом и другими сложными технологическими объектами.
    Принцип работы контроллера состоит в выполнение следующего цикла операций:

    1.    Сбор сигналов с датчиков;
    2.    Обработка сигналов согласно прикладному алгоритму управления;
    3.    Выдача управляющих воздействий на исполнительные устройства.

    В нормальном режиме работы контроллер непрерывно выполняет этот цикл с частотой от 50 раз в секунду. Время, затрачиваемое контроллером на выполнение полного цикла, часто называют временем (или периодом) сканирования; в большинстве современных ПЛК сканирование может настраиваться пользователем в диапазоне от 20 до 30000 миллисекунд. Для быстрых технологических процессов, где критична скорость реакции системы и требуется оперативное регулирование, время сканирования может составлять 20 мс, однако для большинства непрерывных процессов период 100 мс считается вполне приемлемым.

    Аппаратно контроллеры имеют модульную архитектуру и могут состоять из следующих компонентов:

    1.    Базовая панель ( Baseplate). Она служит для размещения на ней других модулей системы, устанавливаемых в специально отведенные позиции (слоты). Внутри базовой панели проходят две шины: одна - для подачи питания на электронные модули, другая – для пересылки данных и информационного обмена между модулями.

    2.    Модуль центрального вычислительного устройства ( СPU). Это мозг системы. Собственно в нем и происходит математическая обработка данных. Для связи с другими устройствами CPU часто оснащается сетевым интерфейсом, поддерживающим тот или иной коммуникационный стандарт.

    3.    Дополнительные коммуникационные модули. Необходимы для добавления сетевых интерфейсов, неподдерживаемых напрямую самим CPU. Коммуникационные модули существенно расширяют возможности ПЛК по сетевому взаимодействию. C их помощью к контроллеру подключают узлы распределенного ввода/вывода, интеллектуальные полевые приборы и станции операторского уровня.

    4.    Блок питания. Нужен для запитки системы от 220 V. Однако многие ПЛК не имеют стандартного блока питания и запитываются от внешнего.  
    4906
    Рис.1. Контроллер РСУ с коммуникациями Profibus и Ethernet.
     
    Иногда на базовую панель, помимо указанных выше, допускается устанавливать модули ввода/вывода полевых сигналов, которые образуют так называемый локальный ввод/вывод. Однако для большинства РСУ (DCS) характерно использование именно распределенного (удаленного) ввода/вывода.

    Отличительной особенностью контроллеров, применяемых в DCS, является возможность их резервирования. Резервирование нужно для повышения отказоустойчивости системы и заключается, как правило, в дублировании аппаратных модулей системы.
     
    4907
    Рис. 2. Резервированный контроллер с коммуникациями Profibus и Ethernet.
     
    Резервируемые модули работают параллельно и выполняют одни и те же функции. При этом один модуль находится в активном состоянии, а другой, являясь резервом, – в режиме “standby”. В случае отказа активного модуля, система автоматически переключается на резерв (это называется “горячий резерв”).

    Обратите внимание, контроллеры связаны шиной синхронизации, по которой они мониторят состояние друг друга. Это решение позволяет разнести резервированные модули на значительное расстояние друг от друга (например, расположить их в разных шкафах или даже аппаратных).

    Допустим, в данный момент активен левый контроллер, правый – находится в резерве. При этом, даже находясь в резерве, правый контроллер располагает всеми процессными данными и выполняет те же самые математические операции, что и левый. Контроллеры синхронизированы. Предположим, случается отказ левого контроллера, а именно модуля CPU. Управление автоматически передается резервному контроллеру, и теперь он становится главным. Здесь очень большое значение имеют время, которое система тратит на переключение на резерв (обычно меньше 0.5 с) и отсутствие возмущений (удара). Теперь система работает на резерве. Как только инженер заменит отказавший модуль CPU на исправный, система автоматически передаст ему управление и возвратится в исходное состояние.

    На рис. 3 изображен резервированный контроллер S7-400H производства Siemens. Данный контроллер входит в состав РСУ Simatic PCS7.
     
     
    4908
    Рис. 3. Резервированный контроллер S7-400H. Несколько другое техническое решение показано на примере резервированного контроллера FCP270 производства Foxboro (рис. 4). Данный контроллер входит в состав системы управления Foxboro IA Series.  
    4909
    Рис. 4. Резервированный контроллер FCP270.
    На базовой панели инсталлировано два процессорных модуля, работающих как резервированная пара, и коммуникационный модуль для сопряжения с оптическими сетями стандарта Ethernet. Взаимодействие между модулями происходит по внутренней шине (тоже резервированной), спрятанной непосредственно в базовую панель (ее не видно на рисунке).

    На рисунке ниже показан контроллер AC800M производства ABB (часть РСУ Extended Automation System 800xA).  
    4910
    Рис. 5. Контроллер AC800M.
     
    Это не резервированный вариант. Контроллер состоит из двух коммуникационных модулей, одного СPU и одного локального модуля ввода/вывода. Кроме этого, к контроллеру можно подключить до 64 внешних модулей ввода/вывода.

    При построении РСУ важно выбрать контроллер, удовлетворяющий всем техническим условиям и требованиям конкретного производства. Подбирая оптимальную конфигурацию, инженеры оперируют определенными техническими характеристиками промышленных контроллеров. Наиболее значимые перечислены ниже:

    1.    Возможность полного резервирования. Для задач, где отказоустойчивость критична (химия, нефтехимия, металлургия и т.д.), применение резервированных конфигураций вполне оправдано, тогда как для других менее ответственных производств резервирование зачастую оказывается избыточным решением.

    2.    Количество и тип поддерживаемых коммуникационных интерфейсов. Это определяет гибкость и масштабируемость системы управления в целом. Современные контроллеры способны поддерживать до 10 стандартов передачи данных одновременно, что во многом определяет их универсальность.

    3.    Быстродействие. Измеряется, как правило, в количестве выполняемых в секунду элементарных операций (до 200 млн.). Иногда быстродействие измеряется количеством обрабатываемых за секунду функциональных блоков (что такое функциональный блок – будет рассказано в следующей статье). Быстродействие зависит от типа центрального процессора (популярные производители - Intel, AMD, Motorola, Texas Instruments и т.д.)

    4.    Объем оперативной памяти. Во время работы контроллера в его оперативную память загружены запрограммированные пользователем алгоритмы автоматизированного управления, операционная система, библиотечные модули и т.д. Очевидно, чем больше оперативной памяти, тем сложнее и объемнее алгоритмы контроллер может выполнять, тем больше простора для творчества у программиста. Варьируется от 256 килобайт до 32 мегабайт.

    5.    Надежность. Наработка на отказ до 10-12 лет.

    6. Наличие специализированных средств разработки и поддержка различных языков программирования. Очевидно, что существование специализированный среды разработки прикладных программ – это стандарт для современного контроллера АСУ ТП. Для удобства программиста реализуется поддержка сразу нескольких языков как визуального, так и текстового (процедурного) программирования (FBD, SFC, IL, LAD, ST; об этом в следующей статье).

    7.    Возможность изменения алгоритмов управления на “лету” (online changes), т.е. без остановки работы контроллера. Для большинства контроллеров, применяемых в РСУ, поддержка online changes жизненно необходима, так как позволяет тонко настраивать систему или расширять ее функционал прямо на работающем производстве.

    8.    Возможность локального ввода/вывода. Как видно из рис. 4 контроллер Foxboro FCP270 рассчитан на работу только с удаленной подсистемой ввода/вывода, подключаемой к нему по оптическим каналам. Simatic S7-400 может спокойно работать как с локальными модулями ввода/вывода (свободные слоты на базовой панели есть), так и удаленными узлами.

    9.    Вес, габаритные размеры, вид монтажа (на DIN-рейку, на монтажную панель или в стойку 19”). Важно учитывать при проектировании и сборке системных шкафов.

    10.  Условия эксплуатации (температура, влажность, механические нагрузки). Большинство промышленных контроллеров могут работать в нечеловеческих условиях от 0 до 65 °С и при влажности до 95-98%.

    [ http://kazanets.narod.ru/PLC_PART1.htm]

    Тематики

    Синонимы

    EN

    DE

    • speicherprogrammierbare Steuerung, f

    FR

    Русско-французский словарь нормативно-технической терминологии > программируемый логический контроллер

  • 19 plc

    1. связь по ЛЭП
    2. программируемый логический контроллер
    3. несущая в канале ВЧ-связи по ЛЭП
    4. маскирование потери пакета
    5. контроллер с программируемой логикой
    6. акционерная компания с ограниченной ответственностью

     

    акционерная компания с ограниченной ответственностью
    AG - аббревиатура для обозначения AKTIENGESELLSCHAFT (акционерное общество). Оно пишется после названия немецких, австрийских или швейцарских компаний и является эквивалентом английской аббревиатуры plc (public limited company-акционерная компания с ограниченной ответственностью). Сравни: GmbH.
    [ http://www.vocable.ru/dictionary/533/symbol/97]

    Тематики

    EN

    DE

    • AG

     

    контроллер с программируемой логикой

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    маскирование потери пакета
    Метод сокрытия факта потери медиапакетов путем генерирования синтезируемых пакетов (МСЭ-T G.1050).
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    Тематики

    • электросвязь, основные понятия

    EN

     

    несущая в канале ВЧ-связи по ЛЭП

    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999]

    Тематики

    • электротехника, основные понятия

    EN

     

    программируемый логический контроллер
    ПЛК
    -
    [Интент]

    контроллер
    Управляющее устройство, осуществляющее автоматическое управление посредством программной реализации алгоритмов управления.
    [Сборник рекомендуемых терминов. Выпуск 107. Теория управления.
     Академия наук СССР. Комитет научно-технической терминологии. 1984 г.]

    EN

    storage-programmable logic controller
    computer-aided control equipment or system whose logic sequence can be varied via a directly or remote-control connected programming device, for example a control panel, a host computer or a portable terminal
    [IEV ref 351-32-34]

    FR

    automate programmable à mémoire
    équipement ou système de commande assisté par ordinateur dont la séquence logique peut être modifiée directement ou par l'intermédiaire d'un dispositif de programmation relié à une télécommande, par exemple un panneau de commande, un ordinateur hôte ou un terminal de données portatif
    [IEV ref 351-32-34]

      См. также:
    - архитектура контроллера;
    - производительность контроллера;
    - время реакции контроллера;
    КЛАССИФИКАЦИЯ

      Основным показателем ПЛК является количество каналов ввода-вывода. По этому признаку ПЛК делятся на следующие группы: По расположению модулей ввода-вывода ПЛК бывают:
    • моноблочными - в которых устройство ввода-вывода не может быть удалено из контроллера или заменено на другое. Конструктивно контроллер представляет собой единое целое с устройствами ввода-вывода (например, одноплатный контроллер). Моноблочный контроллер может иметь, например, 16 каналов дискретного ввода и 8 каналов релейного вывода;
    • модульные - состоящие из общей корзины (шасси), в которой располагаются модуль центрального процессора и сменные модули ввода-вывода. Состав модулей выбирается пользователем в зависимости от решаемой задачи. Типовое количество слотов для сменных модулей - от 8 до 32;
    • распределенные (с удаленными модулями ввода-вывода) - в которых модули ввода-вывода выполнены в отдельных корпусах, соединяются с модулем контроллера по сети (обычно на основе интерфейса RS-485) и могут быть расположены на расстоянии до 1,2 км от процессорного модуля.
    Часто перечисленные конструктивные типы контроллеров комбинируются, например, моноблочный контроллер может иметь несколько съемных плат; моноблочный и модульный контроллеры могут быть дополнены удаленными модулями ввода-вывода, чтобы увеличить общее количество каналов.

    Многие контроллеры имеют набор сменных процессорных плат разной производительности. Это позволяет расширить круг потенциальных пользователей системы без изменения ее конструктива.

    По конструктивному исполнению и способу крепления контроллеры делятся на:
    По области применения контроллеры делятся на следующие типы:
    • универсальные общепромышленные;
    • для управления роботами;
    • для управления позиционированием и перемещением;
    • коммуникационные;
    • ПИД-контроллеры;
    • специализированные.

    По способу программирования контроллеры бывают:
    • программируемые с лицевой панели контроллера;
    • программируемые переносным программатором;
    • программируемые с помощью дисплея, мыши и клавиатуры;
    • программируемые с помощью персонального компьютера.

    Контроллеры могут программироваться на следующих языках:
    • на классических алгоритмических языках (C, С#, Visual Basic);
    • на языках МЭК 61131-3.

    Контроллеры могут содержать в своем составе модули ввода-вывода или не содержать их. Примерами контроллеров без модулей ввода-вывода являются коммуникационные контроллеры, которые выполняют функцию межсетевого шлюза, или контроллеры, получающие данные от контроллеров нижнего уровня иерархии АСУ ТП.   Контроллеры для систем автоматизации

    Слово "контроллер" произошло от английского "control" (управление), а не от русского "контроль" (учет, проверка). Контроллером в системах автоматизации называют устройство, выполняющее управление физическими процессами по записанному в него алгоритму, с использованием информации, получаемой от датчиков и выводимой в исполнительные устройства.

    Первые контроллеры появились на рубеже 60-х и 70-х годов в автомобильной промышленности, где использовались для автоматизации сборочных линий. В то время компьютеры стоили чрезвычайно дорого, поэтому контроллеры строились на жесткой логике (программировались аппаратно), что было гораздо дешевле. Однако перенастройка с одной технологической линии на другую требовала фактически изготовления нового контроллера. Поэтому появились контроллеры, алгоритм работы которых мог быть изменен несколько проще - с помощью схемы соединений реле. Такие контроллеры получили название программируемых логических контроллеров (ПЛК), и этот термин сохранился до настоящего времени. Везде ниже термины "контроллер" и "ПЛК" мы будем употреблять как синонимы.

    Немного позже появились ПЛК, которые можно было программировать на машинно-ориентированном языке, что было проще конструктивно, но требовало участия специально обученного программиста для внесения даже незначительных изменений в алгоритм управления. С этого момента началась борьба за упрощение процесса программирования ПЛК, которая привела сначала к созданию языков высокого уровня, затем - специализированных языков визуального программирования, похожих на язык релейной логики. В настоящее время этот процесс завершился созданием международного стандарта IEC (МЭК) 1131-3, который позже был переименован в МЭК 61131-3. Стандарт МЭК 61131-3 поддерживает пять языков технологического программирования, что исключает необходимость привлечения профессиональных программистов при построении систем с контроллерами, оставляя для них решение нестандартных задач.

    В связи с тем, что способ программирования является наиболее существенным классифицирующим признаком контроллера, понятие "ПЛК" все реже используется для обозначения управляющих контроллеров, которые не поддерживают технологические языки программирования.   Жесткие ограничения на стоимость и огромное разнообразие целей автоматизации привели к невозможности создания универсального ПЛК, как это случилось с офисными компьютерами. Область автоматизации выдвигает множество задач, в соответствии с которыми развивается и рынок, содержащий сотни непохожих друг на друга контроллеров, различающихся десятками параметров.

    Выбор оптимального для конкретной задачи контроллера основывается обычно на соответствии функциональных характеристик контроллера решаемой задаче при условии минимальной его стоимости. Учитываются также другие важные характеристики (температурный диапазон, надежность, бренд изготовителя, наличие разрешений Ростехнадзора, сертификатов и т. п.).

    Несмотря на огромное разнообразие контроллеров, в их развитии заметны следующие общие тенденции:
    • уменьшение габаритов;
    • расширение функциональных возможностей;
    • увеличение количества поддерживаемых интерфейсов и сетей;
    • использование идеологии "открытых систем";
    • использование языков программирования стандарта МЭК 61131-3;
    • снижение цены.
    Еще одной тенденцией является появление в контроллерах признаков компьютера (наличие мыши, клавиатуры, монитора, ОС Windows, возможности подключения жесткого диска), а в компьютерах - признаков контроллера (расширенный температурный диапазон, электронный диск, защита от пыли и влаги, крепление на DIN-рейку, наличие сторожевого таймера, увеличенное количество коммуникационных портов, использование ОС жесткого реального времени, функции самотестирования и диагностики, контроль целостности прикладной программы). Появились компьютеры в конструктивах для жестких условий эксплуатации. Аппаратные различия между компьютером и контроллером постепенно исчезают. Основными отличительными признаками контроллера остаются его назначение и наличие технологического языка программирования.

    [ http://bookasutp.ru/Chapter6_1.aspx]  
    Программируемый логический контроллер (ПЛК, PLC) – микропроцессорное устройство, предназначенное для управления технологическим процессом и другими сложными технологическими объектами.
    Принцип работы контроллера состоит в выполнение следующего цикла операций:

    1.    Сбор сигналов с датчиков;
    2.    Обработка сигналов согласно прикладному алгоритму управления;
    3.    Выдача управляющих воздействий на исполнительные устройства.

    В нормальном режиме работы контроллер непрерывно выполняет этот цикл с частотой от 50 раз в секунду. Время, затрачиваемое контроллером на выполнение полного цикла, часто называют временем (или периодом) сканирования; в большинстве современных ПЛК сканирование может настраиваться пользователем в диапазоне от 20 до 30000 миллисекунд. Для быстрых технологических процессов, где критична скорость реакции системы и требуется оперативное регулирование, время сканирования может составлять 20 мс, однако для большинства непрерывных процессов период 100 мс считается вполне приемлемым.

    Аппаратно контроллеры имеют модульную архитектуру и могут состоять из следующих компонентов:

    1.    Базовая панель ( Baseplate). Она служит для размещения на ней других модулей системы, устанавливаемых в специально отведенные позиции (слоты). Внутри базовой панели проходят две шины: одна - для подачи питания на электронные модули, другая – для пересылки данных и информационного обмена между модулями.

    2.    Модуль центрального вычислительного устройства ( СPU). Это мозг системы. Собственно в нем и происходит математическая обработка данных. Для связи с другими устройствами CPU часто оснащается сетевым интерфейсом, поддерживающим тот или иной коммуникационный стандарт.

    3.    Дополнительные коммуникационные модули. Необходимы для добавления сетевых интерфейсов, неподдерживаемых напрямую самим CPU. Коммуникационные модули существенно расширяют возможности ПЛК по сетевому взаимодействию. C их помощью к контроллеру подключают узлы распределенного ввода/вывода, интеллектуальные полевые приборы и станции операторского уровня.

    4.    Блок питания. Нужен для запитки системы от 220 V. Однако многие ПЛК не имеют стандартного блока питания и запитываются от внешнего.  
    4906
    Рис.1. Контроллер РСУ с коммуникациями Profibus и Ethernet.
     
    Иногда на базовую панель, помимо указанных выше, допускается устанавливать модули ввода/вывода полевых сигналов, которые образуют так называемый локальный ввод/вывод. Однако для большинства РСУ (DCS) характерно использование именно распределенного (удаленного) ввода/вывода.

    Отличительной особенностью контроллеров, применяемых в DCS, является возможность их резервирования. Резервирование нужно для повышения отказоустойчивости системы и заключается, как правило, в дублировании аппаратных модулей системы.
     
    4907
    Рис. 2. Резервированный контроллер с коммуникациями Profibus и Ethernet.
     
    Резервируемые модули работают параллельно и выполняют одни и те же функции. При этом один модуль находится в активном состоянии, а другой, являясь резервом, – в режиме “standby”. В случае отказа активного модуля, система автоматически переключается на резерв (это называется “горячий резерв”).

    Обратите внимание, контроллеры связаны шиной синхронизации, по которой они мониторят состояние друг друга. Это решение позволяет разнести резервированные модули на значительное расстояние друг от друга (например, расположить их в разных шкафах или даже аппаратных).

    Допустим, в данный момент активен левый контроллер, правый – находится в резерве. При этом, даже находясь в резерве, правый контроллер располагает всеми процессными данными и выполняет те же самые математические операции, что и левый. Контроллеры синхронизированы. Предположим, случается отказ левого контроллера, а именно модуля CPU. Управление автоматически передается резервному контроллеру, и теперь он становится главным. Здесь очень большое значение имеют время, которое система тратит на переключение на резерв (обычно меньше 0.5 с) и отсутствие возмущений (удара). Теперь система работает на резерве. Как только инженер заменит отказавший модуль CPU на исправный, система автоматически передаст ему управление и возвратится в исходное состояние.

    На рис. 3 изображен резервированный контроллер S7-400H производства Siemens. Данный контроллер входит в состав РСУ Simatic PCS7.
     
     
    4908
    Рис. 3. Резервированный контроллер S7-400H. Несколько другое техническое решение показано на примере резервированного контроллера FCP270 производства Foxboro (рис. 4). Данный контроллер входит в состав системы управления Foxboro IA Series.  
    4909
    Рис. 4. Резервированный контроллер FCP270.
    На базовой панели инсталлировано два процессорных модуля, работающих как резервированная пара, и коммуникационный модуль для сопряжения с оптическими сетями стандарта Ethernet. Взаимодействие между модулями происходит по внутренней шине (тоже резервированной), спрятанной непосредственно в базовую панель (ее не видно на рисунке).

    На рисунке ниже показан контроллер AC800M производства ABB (часть РСУ Extended Automation System 800xA).  
    4910
    Рис. 5. Контроллер AC800M.
     
    Это не резервированный вариант. Контроллер состоит из двух коммуникационных модулей, одного СPU и одного локального модуля ввода/вывода. Кроме этого, к контроллеру можно подключить до 64 внешних модулей ввода/вывода.

    При построении РСУ важно выбрать контроллер, удовлетворяющий всем техническим условиям и требованиям конкретного производства. Подбирая оптимальную конфигурацию, инженеры оперируют определенными техническими характеристиками промышленных контроллеров. Наиболее значимые перечислены ниже:

    1.    Возможность полного резервирования. Для задач, где отказоустойчивость критична (химия, нефтехимия, металлургия и т.д.), применение резервированных конфигураций вполне оправдано, тогда как для других менее ответственных производств резервирование зачастую оказывается избыточным решением.

    2.    Количество и тип поддерживаемых коммуникационных интерфейсов. Это определяет гибкость и масштабируемость системы управления в целом. Современные контроллеры способны поддерживать до 10 стандартов передачи данных одновременно, что во многом определяет их универсальность.

    3.    Быстродействие. Измеряется, как правило, в количестве выполняемых в секунду элементарных операций (до 200 млн.). Иногда быстродействие измеряется количеством обрабатываемых за секунду функциональных блоков (что такое функциональный блок – будет рассказано в следующей статье). Быстродействие зависит от типа центрального процессора (популярные производители - Intel, AMD, Motorola, Texas Instruments и т.д.)

    4.    Объем оперативной памяти. Во время работы контроллера в его оперативную память загружены запрограммированные пользователем алгоритмы автоматизированного управления, операционная система, библиотечные модули и т.д. Очевидно, чем больше оперативной памяти, тем сложнее и объемнее алгоритмы контроллер может выполнять, тем больше простора для творчества у программиста. Варьируется от 256 килобайт до 32 мегабайт.

    5.    Надежность. Наработка на отказ до 10-12 лет.

    6. Наличие специализированных средств разработки и поддержка различных языков программирования. Очевидно, что существование специализированный среды разработки прикладных программ – это стандарт для современного контроллера АСУ ТП. Для удобства программиста реализуется поддержка сразу нескольких языков как визуального, так и текстового (процедурного) программирования (FBD, SFC, IL, LAD, ST; об этом в следующей статье).

    7.    Возможность изменения алгоритмов управления на “лету” (online changes), т.е. без остановки работы контроллера. Для большинства контроллеров, применяемых в РСУ, поддержка online changes жизненно необходима, так как позволяет тонко настраивать систему или расширять ее функционал прямо на работающем производстве.

    8.    Возможность локального ввода/вывода. Как видно из рис. 4 контроллер Foxboro FCP270 рассчитан на работу только с удаленной подсистемой ввода/вывода, подключаемой к нему по оптическим каналам. Simatic S7-400 может спокойно работать как с локальными модулями ввода/вывода (свободные слоты на базовой панели есть), так и удаленными узлами.

    9.    Вес, габаритные размеры, вид монтажа (на DIN-рейку, на монтажную панель или в стойку 19”). Важно учитывать при проектировании и сборке системных шкафов.

    10.  Условия эксплуатации (температура, влажность, механические нагрузки). Большинство промышленных контроллеров могут работать в нечеловеческих условиях от 0 до 65 °С и при влажности до 95-98%.

    [ http://kazanets.narod.ru/PLC_PART1.htm]

    Тематики

    Синонимы

    EN

    DE

    • speicherprogrammierbare Steuerung, f

    FR

     

    связь по ЛЭП

    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

    Тематики

    • электротехника, основные понятия

    EN

    Англо-русский словарь нормативно-технической терминологии > plc

  • 20 programmable logic controller

    1. программируемый логический контроллер
    2. контроллер с программируемой логикой

     

    контроллер с программируемой логикой

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    программируемый логический контроллер
    ПЛК
    -
    [Интент]

    контроллер
    Управляющее устройство, осуществляющее автоматическое управление посредством программной реализации алгоритмов управления.
    [Сборник рекомендуемых терминов. Выпуск 107. Теория управления.
     Академия наук СССР. Комитет научно-технической терминологии. 1984 г.]

    EN

    storage-programmable logic controller
    computer-aided control equipment or system whose logic sequence can be varied via a directly or remote-control connected programming device, for example a control panel, a host computer or a portable terminal
    [IEV ref 351-32-34]

    FR

    automate programmable à mémoire
    équipement ou système de commande assisté par ordinateur dont la séquence logique peut être modifiée directement ou par l'intermédiaire d'un dispositif de programmation relié à une télécommande, par exemple un panneau de commande, un ordinateur hôte ou un terminal de données portatif
    [IEV ref 351-32-34]

      См. также:
    - архитектура контроллера;
    - производительность контроллера;
    - время реакции контроллера;
    КЛАССИФИКАЦИЯ

      Основным показателем ПЛК является количество каналов ввода-вывода. По этому признаку ПЛК делятся на следующие группы: По расположению модулей ввода-вывода ПЛК бывают:
    • моноблочными - в которых устройство ввода-вывода не может быть удалено из контроллера или заменено на другое. Конструктивно контроллер представляет собой единое целое с устройствами ввода-вывода (например, одноплатный контроллер). Моноблочный контроллер может иметь, например, 16 каналов дискретного ввода и 8 каналов релейного вывода;
    • модульные - состоящие из общей корзины (шасси), в которой располагаются модуль центрального процессора и сменные модули ввода-вывода. Состав модулей выбирается пользователем в зависимости от решаемой задачи. Типовое количество слотов для сменных модулей - от 8 до 32;
    • распределенные (с удаленными модулями ввода-вывода) - в которых модули ввода-вывода выполнены в отдельных корпусах, соединяются с модулем контроллера по сети (обычно на основе интерфейса RS-485) и могут быть расположены на расстоянии до 1,2 км от процессорного модуля.
    Часто перечисленные конструктивные типы контроллеров комбинируются, например, моноблочный контроллер может иметь несколько съемных плат; моноблочный и модульный контроллеры могут быть дополнены удаленными модулями ввода-вывода, чтобы увеличить общее количество каналов.

    Многие контроллеры имеют набор сменных процессорных плат разной производительности. Это позволяет расширить круг потенциальных пользователей системы без изменения ее конструктива.

    По конструктивному исполнению и способу крепления контроллеры делятся на:
    По области применения контроллеры делятся на следующие типы:
    • универсальные общепромышленные;
    • для управления роботами;
    • для управления позиционированием и перемещением;
    • коммуникационные;
    • ПИД-контроллеры;
    • специализированные.

    По способу программирования контроллеры бывают:
    • программируемые с лицевой панели контроллера;
    • программируемые переносным программатором;
    • программируемые с помощью дисплея, мыши и клавиатуры;
    • программируемые с помощью персонального компьютера.

    Контроллеры могут программироваться на следующих языках:
    • на классических алгоритмических языках (C, С#, Visual Basic);
    • на языках МЭК 61131-3.

    Контроллеры могут содержать в своем составе модули ввода-вывода или не содержать их. Примерами контроллеров без модулей ввода-вывода являются коммуникационные контроллеры, которые выполняют функцию межсетевого шлюза, или контроллеры, получающие данные от контроллеров нижнего уровня иерархии АСУ ТП.   Контроллеры для систем автоматизации

    Слово "контроллер" произошло от английского "control" (управление), а не от русского "контроль" (учет, проверка). Контроллером в системах автоматизации называют устройство, выполняющее управление физическими процессами по записанному в него алгоритму, с использованием информации, получаемой от датчиков и выводимой в исполнительные устройства.

    Первые контроллеры появились на рубеже 60-х и 70-х годов в автомобильной промышленности, где использовались для автоматизации сборочных линий. В то время компьютеры стоили чрезвычайно дорого, поэтому контроллеры строились на жесткой логике (программировались аппаратно), что было гораздо дешевле. Однако перенастройка с одной технологической линии на другую требовала фактически изготовления нового контроллера. Поэтому появились контроллеры, алгоритм работы которых мог быть изменен несколько проще - с помощью схемы соединений реле. Такие контроллеры получили название программируемых логических контроллеров (ПЛК), и этот термин сохранился до настоящего времени. Везде ниже термины "контроллер" и "ПЛК" мы будем употреблять как синонимы.

    Немного позже появились ПЛК, которые можно было программировать на машинно-ориентированном языке, что было проще конструктивно, но требовало участия специально обученного программиста для внесения даже незначительных изменений в алгоритм управления. С этого момента началась борьба за упрощение процесса программирования ПЛК, которая привела сначала к созданию языков высокого уровня, затем - специализированных языков визуального программирования, похожих на язык релейной логики. В настоящее время этот процесс завершился созданием международного стандарта IEC (МЭК) 1131-3, который позже был переименован в МЭК 61131-3. Стандарт МЭК 61131-3 поддерживает пять языков технологического программирования, что исключает необходимость привлечения профессиональных программистов при построении систем с контроллерами, оставляя для них решение нестандартных задач.

    В связи с тем, что способ программирования является наиболее существенным классифицирующим признаком контроллера, понятие "ПЛК" все реже используется для обозначения управляющих контроллеров, которые не поддерживают технологические языки программирования.   Жесткие ограничения на стоимость и огромное разнообразие целей автоматизации привели к невозможности создания универсального ПЛК, как это случилось с офисными компьютерами. Область автоматизации выдвигает множество задач, в соответствии с которыми развивается и рынок, содержащий сотни непохожих друг на друга контроллеров, различающихся десятками параметров.

    Выбор оптимального для конкретной задачи контроллера основывается обычно на соответствии функциональных характеристик контроллера решаемой задаче при условии минимальной его стоимости. Учитываются также другие важные характеристики (температурный диапазон, надежность, бренд изготовителя, наличие разрешений Ростехнадзора, сертификатов и т. п.).

    Несмотря на огромное разнообразие контроллеров, в их развитии заметны следующие общие тенденции:
    • уменьшение габаритов;
    • расширение функциональных возможностей;
    • увеличение количества поддерживаемых интерфейсов и сетей;
    • использование идеологии "открытых систем";
    • использование языков программирования стандарта МЭК 61131-3;
    • снижение цены.
    Еще одной тенденцией является появление в контроллерах признаков компьютера (наличие мыши, клавиатуры, монитора, ОС Windows, возможности подключения жесткого диска), а в компьютерах - признаков контроллера (расширенный температурный диапазон, электронный диск, защита от пыли и влаги, крепление на DIN-рейку, наличие сторожевого таймера, увеличенное количество коммуникационных портов, использование ОС жесткого реального времени, функции самотестирования и диагностики, контроль целостности прикладной программы). Появились компьютеры в конструктивах для жестких условий эксплуатации. Аппаратные различия между компьютером и контроллером постепенно исчезают. Основными отличительными признаками контроллера остаются его назначение и наличие технологического языка программирования.

    [ http://bookasutp.ru/Chapter6_1.aspx]  
    Программируемый логический контроллер (ПЛК, PLC) – микропроцессорное устройство, предназначенное для управления технологическим процессом и другими сложными технологическими объектами.
    Принцип работы контроллера состоит в выполнение следующего цикла операций:

    1.    Сбор сигналов с датчиков;
    2.    Обработка сигналов согласно прикладному алгоритму управления;
    3.    Выдача управляющих воздействий на исполнительные устройства.

    В нормальном режиме работы контроллер непрерывно выполняет этот цикл с частотой от 50 раз в секунду. Время, затрачиваемое контроллером на выполнение полного цикла, часто называют временем (или периодом) сканирования; в большинстве современных ПЛК сканирование может настраиваться пользователем в диапазоне от 20 до 30000 миллисекунд. Для быстрых технологических процессов, где критична скорость реакции системы и требуется оперативное регулирование, время сканирования может составлять 20 мс, однако для большинства непрерывных процессов период 100 мс считается вполне приемлемым.

    Аппаратно контроллеры имеют модульную архитектуру и могут состоять из следующих компонентов:

    1.    Базовая панель ( Baseplate). Она служит для размещения на ней других модулей системы, устанавливаемых в специально отведенные позиции (слоты). Внутри базовой панели проходят две шины: одна - для подачи питания на электронные модули, другая – для пересылки данных и информационного обмена между модулями.

    2.    Модуль центрального вычислительного устройства ( СPU). Это мозг системы. Собственно в нем и происходит математическая обработка данных. Для связи с другими устройствами CPU часто оснащается сетевым интерфейсом, поддерживающим тот или иной коммуникационный стандарт.

    3.    Дополнительные коммуникационные модули. Необходимы для добавления сетевых интерфейсов, неподдерживаемых напрямую самим CPU. Коммуникационные модули существенно расширяют возможности ПЛК по сетевому взаимодействию. C их помощью к контроллеру подключают узлы распределенного ввода/вывода, интеллектуальные полевые приборы и станции операторского уровня.

    4.    Блок питания. Нужен для запитки системы от 220 V. Однако многие ПЛК не имеют стандартного блока питания и запитываются от внешнего.  
    4906
    Рис.1. Контроллер РСУ с коммуникациями Profibus и Ethernet.
     
    Иногда на базовую панель, помимо указанных выше, допускается устанавливать модули ввода/вывода полевых сигналов, которые образуют так называемый локальный ввод/вывод. Однако для большинства РСУ (DCS) характерно использование именно распределенного (удаленного) ввода/вывода.

    Отличительной особенностью контроллеров, применяемых в DCS, является возможность их резервирования. Резервирование нужно для повышения отказоустойчивости системы и заключается, как правило, в дублировании аппаратных модулей системы.
     
    4907
    Рис. 2. Резервированный контроллер с коммуникациями Profibus и Ethernet.
     
    Резервируемые модули работают параллельно и выполняют одни и те же функции. При этом один модуль находится в активном состоянии, а другой, являясь резервом, – в режиме “standby”. В случае отказа активного модуля, система автоматически переключается на резерв (это называется “горячий резерв”).

    Обратите внимание, контроллеры связаны шиной синхронизации, по которой они мониторят состояние друг друга. Это решение позволяет разнести резервированные модули на значительное расстояние друг от друга (например, расположить их в разных шкафах или даже аппаратных).

    Допустим, в данный момент активен левый контроллер, правый – находится в резерве. При этом, даже находясь в резерве, правый контроллер располагает всеми процессными данными и выполняет те же самые математические операции, что и левый. Контроллеры синхронизированы. Предположим, случается отказ левого контроллера, а именно модуля CPU. Управление автоматически передается резервному контроллеру, и теперь он становится главным. Здесь очень большое значение имеют время, которое система тратит на переключение на резерв (обычно меньше 0.5 с) и отсутствие возмущений (удара). Теперь система работает на резерве. Как только инженер заменит отказавший модуль CPU на исправный, система автоматически передаст ему управление и возвратится в исходное состояние.

    На рис. 3 изображен резервированный контроллер S7-400H производства Siemens. Данный контроллер входит в состав РСУ Simatic PCS7.
     
     
    4908
    Рис. 3. Резервированный контроллер S7-400H. Несколько другое техническое решение показано на примере резервированного контроллера FCP270 производства Foxboro (рис. 4). Данный контроллер входит в состав системы управления Foxboro IA Series.  
    4909
    Рис. 4. Резервированный контроллер FCP270.
    На базовой панели инсталлировано два процессорных модуля, работающих как резервированная пара, и коммуникационный модуль для сопряжения с оптическими сетями стандарта Ethernet. Взаимодействие между модулями происходит по внутренней шине (тоже резервированной), спрятанной непосредственно в базовую панель (ее не видно на рисунке).

    На рисунке ниже показан контроллер AC800M производства ABB (часть РСУ Extended Automation System 800xA).  
    4910
    Рис. 5. Контроллер AC800M.
     
    Это не резервированный вариант. Контроллер состоит из двух коммуникационных модулей, одного СPU и одного локального модуля ввода/вывода. Кроме этого, к контроллеру можно подключить до 64 внешних модулей ввода/вывода.

    При построении РСУ важно выбрать контроллер, удовлетворяющий всем техническим условиям и требованиям конкретного производства. Подбирая оптимальную конфигурацию, инженеры оперируют определенными техническими характеристиками промышленных контроллеров. Наиболее значимые перечислены ниже:

    1.    Возможность полного резервирования. Для задач, где отказоустойчивость критична (химия, нефтехимия, металлургия и т.д.), применение резервированных конфигураций вполне оправдано, тогда как для других менее ответственных производств резервирование зачастую оказывается избыточным решением.

    2.    Количество и тип поддерживаемых коммуникационных интерфейсов. Это определяет гибкость и масштабируемость системы управления в целом. Современные контроллеры способны поддерживать до 10 стандартов передачи данных одновременно, что во многом определяет их универсальность.

    3.    Быстродействие. Измеряется, как правило, в количестве выполняемых в секунду элементарных операций (до 200 млн.). Иногда быстродействие измеряется количеством обрабатываемых за секунду функциональных блоков (что такое функциональный блок – будет рассказано в следующей статье). Быстродействие зависит от типа центрального процессора (популярные производители - Intel, AMD, Motorola, Texas Instruments и т.д.)

    4.    Объем оперативной памяти. Во время работы контроллера в его оперативную память загружены запрограммированные пользователем алгоритмы автоматизированного управления, операционная система, библиотечные модули и т.д. Очевидно, чем больше оперативной памяти, тем сложнее и объемнее алгоритмы контроллер может выполнять, тем больше простора для творчества у программиста. Варьируется от 256 килобайт до 32 мегабайт.

    5.    Надежность. Наработка на отказ до 10-12 лет.

    6. Наличие специализированных средств разработки и поддержка различных языков программирования. Очевидно, что существование специализированный среды разработки прикладных программ – это стандарт для современного контроллера АСУ ТП. Для удобства программиста реализуется поддержка сразу нескольких языков как визуального, так и текстового (процедурного) программирования (FBD, SFC, IL, LAD, ST; об этом в следующей статье).

    7.    Возможность изменения алгоритмов управления на “лету” (online changes), т.е. без остановки работы контроллера. Для большинства контроллеров, применяемых в РСУ, поддержка online changes жизненно необходима, так как позволяет тонко настраивать систему или расширять ее функционал прямо на работающем производстве.

    8.    Возможность локального ввода/вывода. Как видно из рис. 4 контроллер Foxboro FCP270 рассчитан на работу только с удаленной подсистемой ввода/вывода, подключаемой к нему по оптическим каналам. Simatic S7-400 может спокойно работать как с локальными модулями ввода/вывода (свободные слоты на базовой панели есть), так и удаленными узлами.

    9.    Вес, габаритные размеры, вид монтажа (на DIN-рейку, на монтажную панель или в стойку 19”). Важно учитывать при проектировании и сборке системных шкафов.

    10.  Условия эксплуатации (температура, влажность, механические нагрузки). Большинство промышленных контроллеров могут работать в нечеловеческих условиях от 0 до 65 °С и при влажности до 95-98%.

    [ http://kazanets.narod.ru/PLC_PART1.htm]

    Тематики

    Синонимы

    EN

    DE

    • speicherprogrammierbare Steuerung, f

    FR

    Англо-русский словарь нормативно-технической терминологии > programmable logic controller

См. также в других словарях:

  • Тенденции и перспективы — Использование нетрадиционных средств насилия, прежде только гипотетическое, стало реальностью в 1995, когда японская Аум Синрикё применила против пассажиров столичного метро зарин. В настоящее время рассматривается возможность использования… …   Терроризм и террористы. Исторический справочник

  • Демографические тенденции в России — Численность населения России в 1991 2008 гг На 1 января 2009 года численность населения России, по данным Росстата, составила 141 903 979 человек. [1] Год Население 1600 11 300 000 1700 13 000 000 1800 27 000 000 1890 …   Википедия

  • Анархизм без прилагательных — (от исп. «anarquismo sin adjetivos»), по мнению историка Джорджа Ричарда Езенвеина, «относится к самодостаточному типу анархизма, то есть это доктрина без ярлыков, таких как коммунизм, коллективизм, мютюализм, или индивидуализм. Для других… [это] …   Википедия

  • Антисемитизм без евреев — Часть серии статей об антисемитизме …   Википедия

  • БУНТОВЩИК БЕЗ ПРИЧИНЫ — «БУНТОВЩИК БЕЗ ПРИЧИНЫ» (Rebel Without a Cause), США, 1955, 111 мин. К середине 1950 х годов достигла Нового света обозначившаяся в мировом кино тенденция противостояния традиционного, или, как презрительно называли его молодые, «папочкиного»,… …   Энциклопедия кино

  • Салтыков-Щедрин — Михаил Евграфович (1826 1889) великий руский сатирик. Р. в помещичьей семье. Навсегда запомнил, а в конце своей жизни с бесстрашной правдивостью воспроизвел обломовщину захолустной усадьбы с ее родовым паразитизмом и изощренное выжимание соков из …   Литературная энциклопедия

  • Корь — I (morbilli) острая инфекционная болезнь, сопровождающаяся интоксикацией, катаральным воспалением слизистых оболочек верхних дыхательных путей и глаз, пятнисто папулезной сыпью. Этиология. Возбудитель К. вирус семейства Paramyxoviridae рода… …   Медицинская энциклопедия

  • Тератома — (от греч. téras, родительный падеж (tératos чудовище, урод и oma окончание в названиях опухолей), эмбриома, дизэмбриома, опухоль человека и животных, возникающая в результате нарушения эмбрионального развития тканей. Встречается преимущественно в …   Большая советская энциклопедия

  • Озимый рапс — ? Рапс Научная классификация Царство: Растения От …   Википедия

  • Пневмоконио́зы — (греч. pneumōn легкое + konia пыль + ōsis) хронические заболевания легких, вызываемые длительным вдыханием пыли и характеризующиеся развитием фиброза легочной ткани. Практически всегда являются профессиональными заболеваниями (см.… …   Медицинская энциклопедия

  • Чума — Чумная палочка при флюоресцентной микроскопии. МКБ 10 …   Википедия

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»